首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative heterotrophic activity of marine microorganisms was determined at two sites by the heterotrophic uptake technique throughout the water column, the sediment-water interface, and the surface layer of sediment. In the water column, uptake was greatest at the surface and steadily decreased with depth. The percentage of the substrate that was respired also decreased with depth from 69 to 56%. The activity of the sediment-water interface was several orders of magnitude greater than that of the overlying water and twice that of the sediment immediately below. Hand-collected water samples carefully taken as close as 1 cm from the sediment-water interface had the same characteristically low activity as the bottom few meters of water. Microautoradiography with 3H-labeled glucose, glutamic acid, or thymidine revealed a general decrease in the percentage of active cells with depth from 35 to <1%. The number of active cells in the interface and sediment averaged <10% of the total population. The data indicate that the sediment-water interface is the most active region in this system due to an increased number of active cells rather than an increased percentage of active cells or increased per-cell activity.  相似文献   

2.
Four guilds from a lake sediment-water interface microbial community were isolated and tested for sensitivity to cycloheximide (0.1 to 200 mg liter−1). Field experiments were conducted to compare the inhibition, dilution, and filtration methods for determining grazing rates. Cycloheximide inhibited anaerobic bacteria at 50 mg liter−1, and inhibition of bacterial growth was observed in the grazing experiments. The results show that the assumption of selective inhibition of heterotrophic eucaryotes was violated and preclude the use of cycloheximide in grazing experiments.  相似文献   

3.
Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (−1.58 NO3 µg gdm−1 h−1), and net assimilation of phosphate (1.34 PO4 µg gdm−1 h−1) and ammonium (0.03 NH4 µg gdm−1 h−1). Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action) had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes'' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by decreasing remineralization, relative to mean concentrations of metolachlor and chlorothalonil. Our regression equations can complement models of nitrogen and phosphorus availability in streams to predict potential changes in nutrient dynamics in response to pesticides in freshwaters.  相似文献   

4.
Summary During a one year period the uptake of aspartic acid and of a mixture of amino acids was determined using14C-labeled substrates as described by WRIGHT and HOBBIE (1966). By this technique the activity is analyzed of that part of the bacterial population which is able to utilize the added substrate. For comparison purposes the activity of the total heterotrophic bacterial population was determined by measurement of the oxygen consumption rate. From the oxygen consumption rate (mg O2.l–1.h–1) the carbon mineralization rate (mg C.l–1.h–1) was calculated by applying a conversion factor of 0.29.Aspartic acid was respired for 80% and the amino acid mixture for 43%. From the maximum uptake rates, the potential yearly uptake of the substrate in question can be calculated. These data indicate the relative importance of the several subpopulations in the carbon mineralization process as a whole. The highest value of the potential yearly uptake was obtained for the amino acid mixture; the comparable value for the uptake of aspartic acid was slightly lower.The carbon mineralization rate as calculated from the oxygen uptake experiments was about 150–200 g C.m–2.year–1. The potential yearly uptake as determined with the14C-labeled amino acid mixture was only 2.8% of the amount of mineralized carbon, as calculated from the oxygen uptake experiments. This percentage is very low in view of the fact that 35–55% of the organic carbon of living phytoplankton and zooplankton consists of protein (HAGMEIER, 1961) and that the aerobic mineralization of amino acids is a very common property among the heterotrophic bacterial population (SEPERS, 1979). The value of the applied activity measurements was investigated in order to obtain information about the relation between the uptake process as measured with14C-labeled substrates and the activity of the bacterial population in situ. The results of this study have been published bij SEPERS and VAN ES (1979).  相似文献   

5.
Indirect photometric chromatography and microdistillation enabled a simultaneous measurement of sulfate depletion and sulfide production in the top 3 cm of freshwater sediments to be made. The simultaneous measurement of sulfate depletion and sulfide production rates provided added insight into microbial sulfur metabolism. The lower sulfate reduction rates, as derived from the production of acid-volatile 35S2− only, were explained by a conversion of this pool to an undistillable fraction under acidic conditions during incubation. A mathematical model was applied to calculate sulfate reduction from sulfate gradients at the sediment-water interface. To avoid disturbance of these gradients, the sample volume was reduced to 0.2 g (wet weight) of sediment. Sulfate diffusion coefficients in the model were determined (Ds = 0.3 × 10−5 cm2 s−1 at 6°C). The results of the model were compared with those of radioactive sulfate turnover experiments by assessing the actual turnover rate constants (2 to 5 day−1) and pool sizes of sulfate at different sediment depths.  相似文献   

6.
Algal polysaccharides constitute a diverse and abundant reservoir of organic matter for marine heterotrophic bacteria, central to the oceanic carbon cycle. We investigated the uptake of alginate, a major brown macroalgal polysaccharide, by microbial communities from kelp-dominated coastal habitats. Congruent with cell growth and rapid substrate utilization, alginate amendments induced a decrease in bacterial diversity and a marked compositional shift towards copiotrophic bacteria. We traced 13C derived from alginate into specific bacterial incorporators and quantified the uptake activity at the single-cell level, using halogen in situ hybridization coupled to nanoscale secondary ion mass spectrometry (HISH-SIMS) and DNA stable isotope probing (DNA-SIP). Cell-specific alginate uptake was observed for Gammaproteobacteria and Flavobacteriales, with carbon assimilation rates ranging from 0.14 to 27.50 fg C µm−3 h−1. DNA-SIP revealed that only a few initially rare Flavobacteriaceae and Alteromonadales taxa incorporated 13C from alginate into their biomass, accounting for most of the carbon assimilation based on bulk isotopic measurements. Functional screening of metagenomic libraries gave insights into the genes of alginolytic Alteromonadales active in situ. These results highlight the high degree of niche specialization in heterotrophic communities and help constraining the quantitative role of polysaccharide-degrading bacteria in coastal ecosystems.Subject terms: Water microbiology, Microbial ecology, Marine microbiology, Biogeochemistry, Microbial ecology  相似文献   

7.
The marine sediment-water interface is an important location for microbially controlled nutrient and gas exchange processes. While microbial distributions on the sediment side of the interface are well established in many locations, the distributions of microbes on the water side of the interface are less well known. Here, we measured that distribution for marine virio- and bacterioplankton with a new two-dimensional technique. Our results revealed higher heterogeneity in sediment-water interface biomass distributions than previously reported with a greater than 45– and 2500-fold change cm−1 found within bacterial and viral subpopulations compared to previous maxima of 1.5- and 1.4-fold cm−1 in bacteria and viruses in the same environments. The 45-fold and 2500-fold changes were due to patches of elevated and patches of reduced viral and bacterial abundance. The bacterial and viral hotspots were found over single and multiple sample points and the two groups often coincided whilst the coldspots only occurred over single sample points and the bacterial and viral abundances showed no correlation. The total mean abundances of viruses strongly correlated with bacteria (r = 0.90, p<0.0001, n = 12) for all three microplates (n = 1350). Spatial autocorrelation analysis via Moran’s I and Geary’s C revealed non-random distributions in bacterial subpopulations and random distributions in viral subpopulations. The variable distributions of viral and bacterial abundance over centimetre-scale distances suggest that competition and the likelihood of viral infection are higher in the small volumes important for individual cell encounters than bulk measurements indicate. We conclude that large scale measurements are not an accurate measurement of the conditions under which microbial dynamics exist. The high variability we report indicates that few microbes experience the ‘average’ concentrations that are frequently measured.  相似文献   

8.
Succinate-limited continuous cultures of an Azorhizobium caulinodans strain were grown on ammonia or nitrogen gas as a nitrogen source. Ammonia-grown cells became oxygen limited at 1.7 μM dissolved oxygen, whereas nitrogen-fixing cells remained succinate limited even at dissolved oxygen concentrations as low as 0.9 μM. Nitrogen-fixing cells tolerated dissolved oxygen concentrations as high as 41 μM. Succinate-dependent oxygen uptake rates of cells from the different steady states ranged from 178 to 236 nmol min−1 mg of protein−1 and were not affected by varying chemostat-dissolved oxygen concentration or nitrogen source. When equimolar concentrations of succinate and β-hydroxybutyrate were combined, oxygen uptake rates were greater than when either substrate was used alone. Azide could also used alone as a respiratory substrate regardless of nitrogen source; however, when azide was added following succinate additions, oxygen uptake was inhibited in ammonia-grown cells and stimulated in nitrogen-fixing cells. Use of 25 mM succinate in the chemostat resevoir at a dilution rate of 0.1 h−1 resulted in high levels of background respiration and nitrogenase activity, indicating that the cells were not energy limited. Lowering the reservoir succinate to 5 mM imposed energy limitation. Maximum succinate-dependent nitrogenase activity was 1,741 nmol of C2H4h−1 mg (dry weight)−1, and maximum hydrogen-dependent nitrogenase activity was 949 nmol of C2H4 h−1 mg (dry weight)−1. However, when concentration of 5% (vol/vol) hydrogen or greater were combined with succinate, nitrogenase activity decreased by 35% in comparison to when succinate was used alone. Substitution of argon for nitrogen in the chemostat inflow gas resulted in “washout,” proving that ORS571 can grow on N2 and that there was not a nitrogen source in the medium that could substitute.  相似文献   

9.
The solubilization and biodegradation of whole microbial cells by an aerobic thermophilic microbial population was investigated over a 72 h period. Various parameters were followed including total suspended solids reduction, changes in the dissolved organic carbon, protein and carbohydrate concentrations, and carboxylic acid production and utilisation. From the rates of removal of the various fractions a simple model for the biodegradation processes is proposed and verified with respect to acetic acid production and utilization, and total suspended solids removal. The process is initiated by enzymic degradation of the substrate microbe cell walls followed by growth on the released soluble substrates at low dissolved oxygen concentration with concommitant carboxylic acid production. Subsequent utilization of the unbranched, lower molecular weight carboxylic acids allows additional energy supply following exhaustion of the easily utilisable soluble substrate from microbial cell hydrolysis.List of Symbols Y Xp/Xs kg/kg yield process microbes on substrate yeast cells - Y Xp/Ac kg/kg yield process microbes on acetate - Y Ac/Ss kg/kg yield acetate produced by process microbes growing on substrate yeast cells - Y Ss/Xs kg/kg yield soluble substrate from lysis of yeast cells - Y Ss/Xp kg/kg yield soluble substrate from lysis of process microbes - Y P/Xs kg/kg yield particulates from lysis of yeast cells - Y P/Xp kg/kg yield particulates from lysis of process microbes - max (Ss) h–1 maximum specific growth rate constant for growth of process microbes on soluble substrate - max (Ac) h–1 maximum specific growth rate constant for growth of process microbes on acetate - Ks Ss kg/m3 saturation coefficient for growth of process microbes on soluble substrate - Ks Ac kg/m3 saturation coefficient for growth of process microbes on acetate - K d h–1 death/lysis rate constant for process microbes - K i kg/m3 inhibition constant for growth of process microbes on acetate - K L h–1 lysis rate constant for whole yeast cells - K h h–1 hydrolysis rate constant for particulate biomass  相似文献   

10.
A perfusion method for assaying nitrogenase activity (acetylene reduction) in marine sediments was developed. The method was used to assay sediment cores from Spartina alterniflora (salt marsh), Zostera marina (sea grass), and Thalassia testudinum (sea grass) communities, and the results were compared with those of conventional sealed-flask assays. Rates of ethylene production increased progressively with time in the perfusion assays, reaching plateau values of 2 to 3 nmol · g of dry sediment−1 · h−1 by 10 to 20 h. Depletion of interstitial NH4+ was implicated in this stimulation of nitrogenase activity. Initial acetylene reduction rates determined by the perfusion assay of cores from the Spartina community ranged from 0.15 to 0.60 nmol of C2H4 · g of dry sediment−1 · h−1. These rates were similar to those for sediments assayed in sealed flasks without seawater when determined over linear periods of C2H4 production. Initial values obtained by using the perfusion method were 0.66 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Zostera communities and 0.70 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Thalassia communities. In all cases, rates determined by simultaneous slurry assays were lower than those determined by the perfusion method.  相似文献   

11.
Soil emission of gaseous N oxides during nitrification of ammonium represents loss of an available plant nutrient and has an important impact on the chemistry of the atmosphere. We used selective inhibitors and a glucose amendment in a factorial design to determine the relative contributions of autotrophic ammonium oxidizers, autotrophic nitrite oxidizers, and heterotrophic nitrifiers to nitric oxide (NO) and nitrous oxide (N2O) emissions from aerobically incubated soil following the addition of 160 mg of N as ammonium sulfate kg−1. Without added C, peak NO emissions of 4 μg of N kg−1 h−1 were increased to 15 μg of N kg−1 h−1 by the addition of sodium chlorate, a nitrite oxidation inhibitor, but were reduced to 0.01 μg of N kg−1 h−1 in the presence of nitrapyrin [2-chloro-6-(trichloromethyl)-pyridine], an inhibitor of autotrophic ammonium oxidation. Carbon-amended soils had somewhat higher NO emission rates from these three treatments (6, 18, and 0.1 μg of N kg−1 h−1 after treatment with glucose, sodium chlorate, or nitrapyrin, respectively) until the glucose was exhausted but lower rates during the remainder of the incubation. Nitrous oxide emission levels exhibited trends similar to those observed for NO but were about 20 times lower. Periodic soil chemical analyses showed no increase in the nitrate concentration of soil treated with sodium chlorate until after the period of peak NO and N2O emissions; the nitrate concentration of soil treated with nitrapyrin remained unchanged throughout the incubation. These results suggest that chemoautotrophic ammonium-oxidizing bacteria are the predominant source of NO and N2O produced during nitrification in soil.  相似文献   

12.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

13.
N. Ramaiah 《Polar Biology》1995,15(8):547-553
Bacterial biomass and heterotrophic potential (using 14C-labeled glucose, glutamic acid and sodium acetate) of water, ice and sediment microbial populations were studied from different lakes of the Schirmacher Oasis, Antarctica. Epifluorescence counts of total bacteria in these lakes were observed to be lower by a factor when compared to some of the ultraoligotrophic Antarctic lakes. Biovolumes of bacteria from different samples did not show significant variations, suggesting that regulatory factors were oligotrophy and low temperatures rather than microzoan grazing. Microbial uptake rates of glutamic acid were generally the fastest, followed by glucose and/or sodium acetate in the lakewater samples. The mean values of Vmax cell–1 for glutamic acid, sodium acetate and glucose were 3.81, 0.91 and 0.71 pgCh–1. Results of this study are potentially useful in recognizing the relative abundance and activity of limnetic microbial populations in the Schirmacher Oasis during summer — the active period of microbial growth — and for comparing their activities with other ecosystems elsewhere in continental Antarctica.  相似文献   

14.
An acetylene inhibition method was satisfactorily used for the in situ measurement of denitrification in two sediment-water systems incubated for not more than 22 h. In the presence of added nitrate, denitrification acted as a source of nitrous oxide in a drainage pond, but acted as a sink in its absence. The averaged rates of nitrous oxide accumulation with nitrate enrichment in the absence and presence of acetylene were 0.15 and 0.30 mg of N m−2h−1, respectively. Acetylene reduction at an average rate of 0.07 mmol of C2H4 formed m−2h−1 was simultaneously measured in the absence of added nitrate. In a small eutrophic lake where nitrogen was nonlimiting, the in situ rates of sediment denitrification were 0.09 and 0.11 mg of N m−2h−1 in the presence and absence of macrophytes, respectively, and no acetylene reduction activity was found.  相似文献   

15.
Nitrogenase activity in mangrove forests at two locations in the North Island, New Zealand, was measured by acetylene reduction and 15N2 uptake. Nitrogenase activity (C2H2 reduction) in surface sediments 0 to 10 mm deep was highly correlated (r = 0.91, n = 17) with the dry weight of decomposing particulate organic matter in the sediment and was independent of light. The activity was not correlated with the dry weight of roots in the top 10 mm of sediment (r = −0.01, n = 13). Seasonal and sample variation in acetylene reduction rates ranged from 0.4 to 50.0 μmol of C2H4 m−2 h−1 under air, and acetylene reduction was depressed in anaerobic atmospheres. Nitrogen fixation rates of decomposing leaves from the surface measured by 15N2 uptake ranged from 5.1 to 7.8 nmol of N2 g (dry weight)−1 h−1, and the mean molar ratio of acetylene reduced to nitrogen fixed was 4.5:1. Anaerobic conditions depressed the nitrogenase activity in decomposing leaves, which was independent of light. Nitrogenase activity was also found to be associated with pneumatophores. This activity was light dependent and was probably attributable to one or more species of Calothrix present as an epiphyte. Rates of activity were generally between 100 and 500 nmol of C2H4 pneumatophore−1 h−1 in summer, but values up to 1,500 nmol of C2H4 pneumatophore−1 h−1 were obtained.  相似文献   

16.
We studied the dynamics of microbial communities attached to model aggregates (4-mm-diameter agar spheres) and the component processes of colonization, detachment, growth, and grazing mortality. Agar spheres incubated in raw seawater were rapidly colonized by bacteria, followed by flagellates and ciliates. Colonization can be described as a diffusion process, and encounter volume rates were estimated at about 0.01 and 0.1 cm3 h−1 for bacteria and flagellates, respectively. After initial colonization, the abundances of flagellates and ciliates remained approximately constant at 103 to 104 and ~102 cells sphere−1, respectively, whereas bacterial populations increased at a declining rate to >107 cells sphere−1. Attached microorganisms initially detached at high specific rates of ~10−2 min−1, but the bacteria gradually became irreversibly attached to the spheres. Bacterial growth (0 to 2 day−1) was density dependent and declined hyperbolically when cell density exceeded a threshold. Bacterivorous flagellates grazed on the sphere surface at an average saturated rate of 15 bacteria flagellate−1 h−1. At low bacterial densities, the flagellate surface clearance rate was ~5 × 10−7 cm2 min−1, but it declined hyperbolically with increasing bacterial density. Using the experimentally estimated process rates and integrating the component processes in a simple model reproduces the main features of the observed microbial population dynamics. Differences between observed and predicted population dynamics suggest, however, that other factors, e.g., antagonistic interactions between bacteria, are of importance in shaping marine snow microbial communities.  相似文献   

17.
Pelagic marine viruses have been shown to cause significant mortality of heterotrophic bacteria, cyanobacteria, and phytoplankton. It was previously demonstrated, in nearshore California waters, that viruses contributed to up to 50% of bacterial mortality, comparable to protists. However, in less productive waters, rates of virus production and removal and estimates of virus-mediated bacterial mortality have been difficult to determine. We have measured rates of virus production and removal, in nearshore and offshore California waters, by using fluorescently labeled viruses (FLV) as tracers. Our approach is mathematically similar to the isotope dilution technique, employed in the past to simultaneously measure the release and uptake of ammonia and amino acids. The results indicated overall virus removal rates in the dark ranging from 1.8 to 6.2% h−1 and production rates in the dark ranging from 1.9 to 6.1% h−1, corresponding to turnover times of virus populations of 1 to 2 days, even in oligotrophic offshore waters. Virus removal rates determined by the FLV tracer method were compared to rates of virus degradation, determined at the same locations by radiolabeling methods, and were similar even though the current FLV method is suitable for only dark incubations. Our results support previous findings that virus impacts on bacterial populations may be more important in some environments and less so in others. This new method can be used to determine rates of virus degradation, production, and turnover in eutrophic, mesotrophic, and oligotrophic waters and will provide important inputs for future investigations of microbial food webs.  相似文献   

18.
The transformation of 1,2,4-trichlorobenzene (1,2,4-TCB) at initial concentrations in nano- and micromolar ranges was studied in batch experiments with Burkholderia sp. strain PS14. 1,2,4-TCB was metabolized from nano- and micromolar concentrations to below its detection limit of 0.5 nM. At low initial 1,2,4-TCB concentrations, a first-order relationship between specific transformation rate and substrate concentration was observed with a specific affinity (a0A) of 0.32 liter · mg (dry weight)−1 · h−1 followed by a second one at higher concentrations with an aoA of 0.77 liter · mg (dry weight)−1 · h−1. This transition from the first-order kinetics at low initial 1,2,4-TCB concentrations to the second first-order kinetics at higher 1,2,4-TCB concentrations was shifted towards higher initial 1,2,4-TCB concentrations with increasing cell mass. At high initial concentrations of 1,2,4-TCB, a maximal transformation rate of approximately 37 nmol · min−1 · mg (dry weight)−1 was measured, irrespective of the cell concentration.  相似文献   

19.
In stratified Lake Vechten, The Netherlands, protozoan grazing was estimated on the basis of uptake of fluorescently labeled bacteria and compared with bacterial production estimated on the basis of thymidine incorporation. By using a grazer-free mixed bacterial population from the lake in continuous culture, an empirical relationship between cell production and thymidine incorporation was established. Thymidine incorporation into total cold-trichloroacetic-acid-insoluble macromolecules yielded a relatively constant empirical conversion factor of ca. 1018 (range, 0.38 × 1018 to 1.42 × 1018) bacteria mol of thymidine−1 at specific growth rates (μ) ranging from 0.007 to 0.116 h−1. Although thymidine incorporation has been assumed to measure DNA synthesis thymidine incorporation appeared to underestimate the independently measured bacterial DNA synthesis by at least 1.5- to 13-fold, even if all incorporated label was assumed to be in DNA. However, incorporation into DNA was found to be insignificant as measured by conventional acid-base hydrolysis. Methodological problems of the thymidine technique are discussed. Like the cultures, Lake Vechten bacteria showed considerable thymidine incorporation into total macromolecules, but no significant incorporation into DNA was found by acid-base hydrolysis. This applied not only to the low-oxygen hypo- and metalimnion but also to the aerobic epilimnion. Thus, the established empirical conversion factor for thymidine incorporation into total macromolecules was used to estimate bacterial production. Maximum production rates (141 × 106 bacteria liter−1 h−1; μ, 0.012 h−1) were found in the metalimnion and were 1 order of magnitude higher than in the epi- and hypolimnion. In all three strata, the estimated bacterial production was roughly balanced by the estimated protozoan grazing. Heterotrophic nanoflagellates were the major consumers of the bacterial production and showed maximum numbers (up to 40 × 106 heterotrophic nanoflagellates liter−1) in the microaerobic metalimnion.  相似文献   

20.
A model of growth and substrate utilization for ferrous-iron-oxidizing bacteria attached to the disks of a rotating biological contactor was developed and tested. The model describes attached bacterial growth as a saturation function in which the rate of substrate utilization is determined by a maximum substrate oxidation rate constant (P), a half-saturation constant (Ks), and the concentration of substrate within the rotating biological contactor (S1). The maximum oxidation rate constant was proportional to flow rate, and the substrate concentration in the reactor varied with influent substrate concentration (S0). The model allowed the prediction of metabolic constants and included terms for both constant and growth-rate-dependent maintenance energies. Estimates for metabolic constants of the attached population of acidophilic, chemolithotrophic, iron-oxidizing bacteria limited by ferrous iron were: maximum specific growth rate (μmax), 1.14 h−1; half-saturation constant (Ks) for ferrous iron, 54.9 mg/liter; constant maintenance energy coefficient (m1), 0.154 h−1; growth-rate-dependent maintenance energy coefficient (m′), 0.07 h−1; maximum yield (Yg), 0.063 mg of organic nitrogen per mg of Fe(II) oxidized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号