首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daczewska M  Saczko J 《Folia biologica》2003,51(3-4):151-157
During myotomal myogenesis in Hymenochirus boettgeri primary myoblasts differentiate into morphologically and functionally mature, mononucleate myotubes. Further muscle development in the studied species is due to fusion of mesenchymal cells with the latter, resulting in the presence of two classes of nuclei in the myotube: large of myotomal origin and small of mesenchymal origin. Densitometric measurements of DNA content revealed that the myotube nuclei at stages 35 reached values close to 4C DNA (3, 3C DNA), while at a later stage (42) the values were equal to 4C. Conversely, the secondary myoblast nuclei following the fusion with the myotube at stage 42 had 2C DNA--a content comparable to that found in erythrocyte nuclei. PCNA (Proliferating Cell Nuclear Antigen)--marker of S-phase of cell cycle, detected in the myotube nuclei (at stages 35, 42) appears during DNA replication.  相似文献   

2.
3.
《The Journal of cell biology》1996,134(6):1483-1497
Laminin (laminin-1; alpha 1-beta 1-gamma 1) is known to promote myoblast proliferation, fusion, and myotube formation. Merosin (laminin- 2 and -4; alpha 2-beta 1/beta 2-gamma 1) is the predominant laminin variant in skeletal muscle basement membranes; genetic defects affecting its structure or expression are the causes of some types of congenital muscular dystrophy. However, the precise nature of the functions of merosin in muscle remain unknown. We have developed an in vitro system that exploits human RD and mouse C2C12 myoblastic cell lines and their clonal variants to study the roles of merosin and laminin in myogenesis. In the parental cells, which fuse efficiently to multinucleated myotubes, merosin expression is upregulated as a function of differentiation while laminin expression is downregulated. Cells from fusion-deficient clones do not express either protein, but laminin or merosin added to the culture medium induced their fusion. Clonal variants which fuse, but form unstable myotubes, express laminin but not merosin. Exogenous merosin converted these myotubes to a stable phenotype, while laminin had no effect. Myotube instability was corrected most efficiently by transfection of the merosin-deficient cells with the merosin alpha 2 chain cDNA. Finally, merosin appears to promote myotube stability by preventing apoptosis. Hence, these studies identify novel biological functions for merosin in myoblast fusion and muscle cell survival; furthermore, these explain some of the pathogenic events observed in congenital muscular dystrophy caused by merosin deficiency and provide in vitro models to further investigate the molecular mechanisms of this disease.  相似文献   

4.
We recently reported that cultures of terminally differentiating myotube cells synthesize histones in reduced but significant amounts in comparison with proliferating myoblasts (Wunsch et al., 1987, Dev. Biol., 119: 85-93). In this study, the stability of myotube histone has been determined, comparing the degradation of de novo-synthesized histones in nascent (day 3) and maturing (day 4) myotubes with histones in the same cells that had been previously made during myoblast proliferation (day 1). Histones synthesized in proliferating myoblasts and myotubes were pulse-labeled with 3H-lysine and chased up to seven days, followed by determinations of radioactivity remaining in histone bands using fluorography of one- and two-dimensional polyacrylamide gels. Considered in aggregate, core histones synthesized de novo in nascent (day 3) myotubes were degraded most rapidly, followed by myotube histones that had been previously made during the proliferative phase (day 1) of myogenesis. De novo-synthesized histones in maturing (day 4) myotubes were relatively stable. Individual histone classes were degraded in the following order of increasing half-life, regardless of the differentiative stage at which they were synthesized: H2A.Z, H2A, H2B, H3(.2, day 1; .3, days 3 and 4), H4.  相似文献   

5.
Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C(2)C(12) myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5alpha and Hic-5beta, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results in a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5alpha is permissive to differentiation while expression of either Hic-5beta or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C(2)C(12) myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.  相似文献   

6.
Summary Primary cultures of embryonic chick pectoral skeletal muscle were used to study calcium regulation of myoblast fusion to form multinucleated myotubes. Using atomic absorption spectrometry to measure total cellular calcium and the45Ca-exchange method to determine free cellular Ca++, our data suggest that only the free cellular calcium changes significantly during development under conditions permissive for myotube formation (0.9 mM external Ca++). Increases in calcium uptake occurred before and toward the end of the period of fusion with the amount approximating 2 to 4 pmol per cell in mass cultures. If the medium [Ca++] is decreased to 0.04 mM, as determined with a calcium electrode, a fusion-block is produced and free cell Ca++ decreased 5- to 10-fold. Removal of the fusion-block by increasing medium [Ca++] results in a release of the fusion-block and an increase in cellular Ca++ to approximately 1 pmol per cell during fusion, and higher thereafter. Cation ionophore A23187 produced transient increases in cellular calcium and stimulated myoblast fusion and the final extent of myotube formation only when added at the onset of culture. Results suggest that transient increased calcium uptake alone is insufficient for fusion because critical cellular content in conjunction with permissive amounts of medium [Ca++] must exist. The latter suggests further that cell surface Ca++ was also critical.  相似文献   

7.
Accumulations of Tau, a microtubule‐associated protein (MAP), into neurofibrillary tangles is a hallmark of Alzheimer's disease and other tauopathies. However, the mechanisms leading to this pathology are still unclear: the aggregates themselves could be toxic or the sequestration of Tau into tangles might prevent Tau from fulfilling its normal functions, thereby inducing a loss of function defect. Surprisingly, the consequences of losing normal Tau expression in vivo are still not well understood, in part due to the fact that Tau knockout mice show only subtle phenotypes, presumably due to the fact that mammals express several MAPs with partially overlapping functions. In contrast, flies express fewer MAP, with Tau being the only member of the Tau/MAP2/MAP4 family. Therefore, we used Drosophila to address the physiological consequences caused by the loss of Tau. Reducing the levels of fly Tau (dTau) ubiquitously resulted in developmental lethality, whereas deleting Tau specifically in neurons or the eye caused progressive neurodegeneration. Similarly, chromosomal mutations affecting dTau also caused progressive degeneration in both the eye and brain. Although photoreceptor cells initially developed normally in dTau knockdown animals, they subsequently degenerated during late pupal stages whereas weaker dTau alleles caused an age‐dependent defect in rhabdomere structure. Expression of wild type human Tau partially rescued the neurodegenerative phenotype caused by the loss of endogenous dTau, suggesting that the functions of Tau proteins are functionally conserved from flies to humans. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1210–1225, 2014  相似文献   

8.
Primary ciliary dyskinesia (PCD) results from defects in motile cilia function. Mice homozygous for the mutation big giant head (bgh) have several abnormalities commonly associated with PCD, including hydrocephalus, male infertility, and sinusitis. In the present study, we use a variety of histopathological and cell biological techniques to characterize the bgh phenotype, and we identify the bgh mutation using a positional cloning approach. Histopathological, immunofluorescence, and electron microscopic analyses demonstrate that the male infertility results from shortened flagella and disorganized axonemal and accessory structures in elongating spermatids and mature sperm. In addition, there is a reduced number of elongating spermatids during spermatogenesis and mature sperm in the epididymis. Histological analyses show that the hydrocephalus is characterized by severe dilatation of the lateral ventricles and that bgh sinuses have an accumulation of mucus infiltrated by neutrophils. In contrast to the sperm phenotype, electron microscopy demonstrates that mutant respiratory epithelial cilia are ultrastructurally normal, but video microscopic analysis shows that their beat frequency is lower than that of wild-type cilia. Through a positional cloning approach, we identified two sequence variants in the gene encoding sperm flagellar protein 2 (SPEF2), which has been postulated to play an important role in spermatogenesis and flagellar assembly. A causative nonsense mutation was validated by Western blot analysis, strongly suggesting that the bgh phenotype results from the loss of SPEF2 function. Taken together, the data in this study demonstrate that SPEF2 is required for cilia function and identify a new genetic cause of PCD in mice.  相似文献   

9.
Skeletal myogenesis is a precise procedure marked by specific changes in muscle cell morphology and cytoarchitecture. Cessation of proliferation by skeletal muscle precursor cells (myoblasts) coincides with the induction of fusion to form multinucleated myotubes and the initiation of differentiation, the process through which sarcomeres are formed. Concurrently, there is a distinct upregulation in expression of muscle-specific isoforms and an extreme downregulation of non-muscle-specific cytoskeletal isoforms. The sarcomere is the contractile unit of the cell and is comprised of a number of different proteins aggregated and aligned in very ordered arrays along the myotube. It is this rigorously controlled alignment that gives striated muscle its characteristic "striped" appearance. Previous studies, conducted predominantly in cardiac muscle, propose models for the development of the sarcomere that attribute little of the differentiative process to the myoblast morphology and cytoskeletal arrangement. In this study, perturbation of myoblast morphology and cytoskeletal arrangement by transfection with nonmuscle actin genes in the mouse skeletal muscle cell line C2 resulted in myotubes of both varied morphology and sarcomeric structure. The results presented herein not only provide novel insights into the formation of the sarcomere in skeletal muscle, but also suggest a role for myoblast morphology and cytoskeletal structure in the subsequent differentiation of the myotube.  相似文献   

10.
Alveologenesis is the final stage of lung development and is responsible for the formation of the principle gas exchange units called alveoli. The lung mesenchyme, in particular the alveolar myofibroblasts, are drivers of alveolar development, however,few key regulators that govern the proper distribution and behavior of these cells in the distal lung during alveologenesis have been identified. While Hox5 triple mutants(Hox5 aabbcc) exhibit neonatal lethality, four-allele, compound mutant mice(Hox5 AabbCc) are born in Mendelian ratios and are phenotypically normal at birth. However, they exhibit defects in alveologenesis characterized by a BPD-like phenotype by early postnatal stages that becomes more pronounced at adult stages. Invasive pulmonary functional analyses demonstrate significant increases in total lung volume and compliance and a decrease in elastance in Hox5 compound mutants. SMA+ myofibroblasts in the distal lung are distributed abnormally during peak stages of alveologenesis and aggregate, resulting in the formation of a disrupted elastin network. Examination of other key components of the distal lung ECM, as well as other epithelial cells and lipofibroblasts reveal no differences in distribution. Collectively, these data indicate that Hox5 genes play a critical role in alveolar development by governing the proper cellular behavior of myofibroblasts during alveologenesis.  相似文献   

11.
Rab27 small GTPases regulate secretion and movement of lysosome-related organelles such as T cell cytolytic granules and platelet-dense granules. Previous studies indicated that Rab27a and Rab27b are expressed in the murine lung suggesting that they regulate secretory processes in the lung. Consistent with those studies, we found that Rab27a and Rab27b are expressed in cell types that contain secretory granules: alveolar epithelial type II (AEII) and Clara cells. We then used Rab27a/Rab27b double knockout (DKO) mice to examine the functional consequence of loss of Rab27 proteins in the murine lung. Light and electron microscopy revealed a number of morphological changes in lungs from DKO mice when compared with those in control animals. In aged DKO mice we observed atrophy of the bronchiolar and alveolar epithelium with reduction of cells numbers, thinning of the bronchiolar epithelium and alveolar walls, and enlargement of alveolar airspaces. In these samples we also observed increased numbers of activated foamy alveolar macrophages and granulocyte containing infiltrates together with reduction in the numbers of Clara cells and AEII cells compared with control. At the ultrastructural level we observed accumulation of cytoplasmic membranes and vesicles in Clara cells. Meanwhile, AEII cells in DKO accumulated large mature lamellar bodies and lacked immature/precursor lamellar bodies. We hypothesize that the morphological changes observed at the ultrastructural level in DKO samples result from secretory defects in AEII and Clara cells and that over time these defects lead to atrophy of the epithelium.  相似文献   

12.
13.
Congenital diaphragmatic hernia (CDH) is a significant clinical problem in which a portion of the diaphragmatic musculature fails to form, resulting in a hole in the diaphragm. Here we use animal models of CDH to test two hypotheses regarding the pathogenesis. First, the origin of the defect results from the malformation of the amuscular mesenchymal component of the primordial diaphragm rather than with the process of myogenesis. Second, the defect in the primordial diaphragmatic tissue is not secondary to defects in the developing lung. In c-met(-/-) mouse embryos, in which diaphragm muscle fibers do not form because of a defect in muscle precursor migration, the amuscular substratum forms fully. We show that a defect characteristic of CDH can be induced in the amuscular membrane. In Fgf10(-/-) mouse embryos that have lung agenesis we show that the primordial diaphragm does not depend on signals from lung tissue for proper development and that diaphragmatic malformation is a primary defect in CDH. These data suggest that the pathogenesis of CDH involves mechanisms fundamentally different from previously proposed hypotheses.  相似文献   

14.
Ultrastructural studies of lizard (Anolis carolinensis) myogenesis in vitro   总被引:2,自引:0,他引:2  
In vitro differentiation of lizard (Anolis carolinensis) skeletal muscle cells was studied by electron microscopy. Myogenesis was studied under conditions in which large numbers of postmitotic prefusion myoblasts accumulate (Growth Medium) and under conditions which are permissive for myotube formation (Fusion Medium). In Growth Medium, myogenic cells proliferate, then assume a characteristic spherical morphology which permits definitive identification of prefusion myoblasts. During the early stages of culture, these round myoblasts resemble myoblasts described in other systems; ultrastructural similarities and differences are discussed. After longer periods of culture in Growth Medium, a continuum of differentiation from isolated myofilaments to assembled myofibrils was seen in these mononucleated cells. These observations confirm the dissociability of contractile protein assembly and myoblast fusion Cultures maintained in Fusion Medium or transferred from Growth Medium to Fusion Medium form multinucleated myotubes on a predictable time scale. Myogenesis was followed in these cultures with particular reference to the early events in myofilament assembly and myofibril formation.  相似文献   

15.
16.
The intercalated disk protein Xin was originally discovered in chicken striated muscle and implicated in cardiac morphogenesis. In the mouse, there are two homologous genes, mXinalpha and mXinbeta. The human homolog of mXinalpha, Cmya1, maps to chromosomal region 3p21.2-21.3, near a dilated cardiomyopathy with conduction defect-2 locus. Here we report that mXinalpha-null mouse hearts are hypertrophied and exhibit fibrosis, indicative of cardiomyopathy. A significant upregulation of mXinbeta likely provides partial compensation and accounts for the viability of the mXinalpha-null mice. Ultrastructural studies of mXinalpha-null mouse hearts reveal intercalated disk disruption and myofilament disarray. In mXinalpha-null mice, there is a significant decrease in the expression level of p120-catenin, beta-catenin, N-cadherin, and desmoplakin, which could compromise the integrity of the intercalated disks and functionally weaken adhesion, leading to cardiac defects. Additionally, altered localization and decreased expression of connexin 43 are observed in the mXinalpha-null mouse heart, which, together with previously observed abnormal electrophysiological properties of mXinalpha-deficient mouse ventricular myocytes, could potentially lead to conduction defects. Indeed, ECG recordings on isolated, perfused hearts (Langendorff preparations) show a significantly prolonged QT interval in mXinalpha-deficient hearts. Thus mXinalpha functions in regulating the hypertrophic response and maintaining the structural integrity of the intercalated disk in normal mice, likely through its association with adherens junctional components and actin cytoskeleton. The mXinalpha-knockout mouse line provides a novel model of cardiac hypertrophy and cardiomyopathy with conduction defects.  相似文献   

17.
Several syndromes characterized by defects in cardiovascular and craniofacial development are associated with a hemizygous deletion of chromosome 22q11 in humans and involve defects in pharyngeal arch and neural crest cell development. Recent efforts have focused on identifying 22q11 deletion syndrome modifying loci. In this study, we show that mouse embryos deficient for Gbx2 display aberrant neural crest cell patterning and defects in pharyngeal arch-derived structures. Gbx2(-/-) embryos exhibit cardiovascular defects associated with aberrant development of the fourth pharyngeal arch arteries including interrupted aortic arch type B, right aortic arch, and retroesophageal right subclavian artery. Other developmental abnormalities include overriding aorta, ventricular septal defects, cranial nerve, and craniofacial skeletal patterning defects. Recently, Fgf8 has been proposed as a candidate modifier for 22q11 deletion syndromes. Here, we demonstrate that Fgf8 and Gbx2 expression overlaps in regions of the developing pharyngeal arches and that they interact genetically during pharyngeal arch and cardiovascular development.  相似文献   

18.
Dosage of the survival motor neuron (SMN) protein has been directly correlated with the severity of disease in patients diagnosed with spinal muscular atrophy (SMA). It is also clear that SMA is a neurodegenerative disorder characterized by the degeneration of the alpha-motor neurons in the anterior horn of the spinal cord and atrophy of the associated skeletal muscle. What is more controversial is whether it is neuronal and/or muscle-cell-autonomous defects that are responsible for the disease per se. Although motor neuron degeneration is generally accepted as the primary event in SMA, intrinsic muscle defects in this disease have not been ruled out. To gain a better understanding of the influence of SMN protein dosage in muscle, we have generated a hypomorphic series of myoblast (C2C12) stable cell lines with variable Smn knockdown. We show that depletion of Smn in these cells resulted in a decrease in the number of nuclear 'gems' (gemini of coiled bodies), reduced proliferation with no increase in cell death, defects in myoblast fusion, and malformed myotubes. Importantly, the severity of these abnormalities is directly correlated with the decrease in Smn dosage. Taken together, our work supports the view that there is an intrinsic defect in skeletal muscle cells of SMA patients and that this defect contributes to the overall pathogenesis in this devastating disease.  相似文献   

19.

Background  

Combining microarray results and biological pathway information will add insight into biological processes. Pathway information is widely available in databases through the internet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号