首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial Degradation of Alkyl Carbazoles in Norman Wells Crude Oil   总被引:5,自引:3,他引:2       下载免费PDF全文
Norman Wells crude oil was fractionated by sequential alumina and silicic acid column chromatography methods. The resulting nitrogen-rich fraction was analyzed by gas chromatography-mass spectrometry and showed 26 alkyl (C1 to C5) carbazoles to be the predominant compounds. An oil-degrading mixed bacterial culture was enriched on carbazole to enhance its ability to degrade nitrogen heterocycles. This culture was used to inoculate a series of flasks of mineral medium and Norman Wells crude oil. Residual oil was recovered from these cultures after incubation at 25°C for various times. The nitrogen-rich fraction was analyzed by capillary gas chromatography, using a nitrogen-specific detector. Most of the C1-, C2-, and C3- carbazoles and one of the C4-isomers were degraded within 8 days. No further degradation occurred when incubation was extended to 28 days. The general order of susceptibility of the isomers to biodegradation was C1 > C2 > C3 > C4. The carbazole-enriched culture was still able to degrade n-alkanes, isoprenoids, aromatic hydrocarbons, and sulfur heterocycles in the crude soil.  相似文献   

2.
Summary This study examined the microbial degradation of fuel oil by nine highly adapted different commercially available mixed bacterial cultures (DBC-plus, Flow Laboratories, Meckenheim, F.R.G.) and a bacterial community from a domestic sewage sludge sample. All mixed cultures were cultivated under aerobic batch conditions shaking (110 rpm) at 20°C in a mineral base medium containing 1 or 5% (v/v) fuel oil as the sole carbon source. Percent degradation of fuel oil and the n-alkane fraction was recorded for the nine DBC-plus cultures and the mixed population of the activated sludge sample. The increase in colony counts, protein, and optical density was studied during a 31-day incubation period for DBC-plus culture A, DBC-plus culture A2 and the activated sludge sample. The activated sludge mixed culture was most effective in degrading fuel oil, but various isolated bacterial strains from this bacterial community were not able to grow on fuel oil as the sole carbon source. In contrast, the n-alkane degradation rates of the DBC-cultures were lower, but single strains from the commercially available mixed cultures were able to mineralize fuel oil hydrocarbons. Strains ofPseudomonas aeruginosa were isolated most frequently and these organisms were able to grow very rapidly on fuel oil as a complex sole carbon source. The results indicate that fuel oil degradation in domestic sewage sludge is performed by mixed populations of naturally occurring bacteria and does not depend on the application of highly adapted commercially available cultures.  相似文献   

3.
Soils and sediments polluted with crude oil are of major environmental concern on various contaminated sites. Outdoors pot experiments were conducted to test the phytodegradation potential of common reed (Phragmites australis) and poplar (Populus nigra × maximowiczii) in fertilised and non-fertilised control treatments. Two topsoils (E, G) of different texture were mixed with crude oil. Soil analysis included hydrocarbon (HC) measurements, detection of labile phosphorus and mineralised nitrogen as well as dehydrogenase activity. Increased HC degradation by native soil biota was clearly related to higher P availability in soil G and to fertilisation in soil E. Except of the non-fertilised common reed treatment, plants did not enhance crude oil degradation. We found even inhibited degradation of high molecular weight HC in the presence of plants together with declining labile phosphorous concentrations due to planting on soil E. Native soil biota were able to use the whole range of crude oil compounds (C10 to C60) as a carbon source in the presence of sufficient nutrient concentrations in soil. This study is the first to show that reduced HC degradation in the higher molecular weight crude oil fraction (C20 to C40) is likely to be a consequence of decreased phosphorus availability for microorganisms in the plant rhizosphere.  相似文献   

4.
5.
The rhizospheres and phyllospheres of peas, beans, tomatoes, and squash raised in a desert sand soil mixed with 0.5% crude oil were rich in oil-utilizing bacteria and accommodated large numbers of free-living diazotrophic bacteria, with potential for hydrocarbon utilization. According to their 16S rRNA-sequences, the cultivable oil-utilizing bacteria were affiliated with the following genera, arranged in decreasing frequency: Bacillus, Ochrobactrum, Enterobacter, Rhodococcus, Arthrobacter, Pontola, Nocardia, and Pseudoxanthomonas. Diazotrophic isolates were affiliated with Rhizobium, Bacillus, Rhodococcus, Leifsonia, Cellulosimicrobium, Stenotrophomonas, Kocuria, Arthrobacter, and Brevibacillus. The crude oil–utilizing and diazotrophic isolates grew, with varying growth intensities, on individual aliphatic (C8 to C40) and aromatic hydrocarbons, as sole sources of carbon and energy. Quantitative gas liquid chromatographic measurements showed that representative bacterial isolates eliminated pure n-hexadecane, n-decosane, phenanthrene, and crude oil from the surrounding liquid media. Cultivation of oily sand–soil samples with any of the four tested crops led to enhanced oil degradation in that soil, as compared with the degradation in uncultivated oily sand–soil samples.  相似文献   

6.
A quantitative solid-phase microextraction, gas chromatography, flame ionization detector (SPME-GC-FID) method for low-molecular-weight hydrocarbons from crude oil was developed and applied to live biodegradation samples. Repeated sampling was achieved through headspace extractions at 30°C for 45 min from flasks sealed with Teflon Mininert. Quantification without detailed knowledge of oil–water–air partition coefficients required the preparation of standard curves. An inverse relationship between retention time and mass accumulated on the SPME fibre was noted. Hydrocarbons from C5 to C16 were dated and those up to C11 were quantified. Total volatiles were quantified using six calibration curves. Biodegradation of volatile hydrocarbons during growth on crude oil was faster and more complete with a mixed culture than pure isolates derived therefrom. The mixed culture degraded 55% of the compounds by weight in 4 days versus 30–35% by pure cultures of Pseudomonas aeruginosa, Rhodococcus globerulus or a co-culture of the two. The initial degradation rate was threefold higher for the mixed culture, reaching 45% degradation after 48 h. For the mixed culture, the degradation rate of individual alkanes was proportional to the initial concentration, decreasing from hexane to undecane. P. fluorescens was unable to degrade any of the low-molecular-weight hydrocarbons and methylcyclohexane was recalcitrant in all cases. Overall, the method was found to be reliable and cost-effective. Journal of Industrial Microbiology & Biotechnology (2000) 25, 155–162. Received 04 March 2000/ Accepted in revised form 25 June 2000  相似文献   

7.
Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.  相似文献   

8.
Fresh leaves of American grass and broad beans grown in pristine soil were naturally colonized with cultivable volatile oil hydrocarbon-utilizing bacteria, whose numbers increased significantly in plants grown in oily soil. According to their 16S rRNA gene sequences those bacteria were affiliated to various species of the genera Rhodococcus and Pseudomonas. Qualitative growth studies revealed that pure cultures of these phyllospheric bacteria could grow successfully on a solid mineral medium containing individual alkanes with chain lengths of C9 through C40 and the aromatics phenanthrene, naphthalene, and biphenyl as sole sources of carbon and energy. Quantitative measurements showed that the individual pure bacterial isolates degraded between about 20 and 30% of crude oil, n-hexadecane, or phenanthrene in batch culture after a one-week incubation. These results reflect the high hydrocarbon degradation potential of those bacteria. The isolates were diazotrophic (nitrogen fixers), meaning that they were self-dependent in covering their nitrogen requirements. Incubating fresh leaves in closed microcosms containing volatile oil hydrocarbons resulted in up to more than 80% attenuation of these compounds after two weeks. Experimental evidence was provided that the leaf tissues did not contribute to this attenuation, which was exclusively due to the bacterial activity.  相似文献   

9.
Polychlorinated biphenyls from transformer oil were degraded in liquid culture under aerobic conditions using a mixed bacterial culture isolated from a transformer oil sample with a high content of polychlorinated biphenyls and other hydrocarbons. Four strains were identified, three of them corresponded to genusBacillus, the other one toErwinia. Bacteria in the transformer oil could remove as much as 65% of polychlorinated biphenyls (88%W/V in the transformer oil). Additional data showed that the two isolated strains ofB. lentus were able to grow on transformer oil and degrade polychlorinated biphenyls by 80 and 83%. Our results provide evidence that microorganisms occurring in transformer oil have the potential to degrade polychlorinated biphenyls.  相似文献   

10.
Three bacterial strains able to use different aromatic compounds as the sole carbon and energy source were tested for their potential to degrade Aroclor 1221 in soil microcosms when present in mixed culture. Disappearance of polychlorinated biphenyls (PCBs), occurrence of metabolites, release of chloride, and survival of the laboratory-selected strains were investigated under different conditions. In principle, complete mineralization of various congeners of Aroclor 1221, a technical mixture of PCBs, by the mixed culture was possible. The autochthonous microflora negatively affected the degradation due to formation of a toxic compound from 4-chlorobenzoate. 4-Chlorobenzoate was produced by one of the added strains, Pseudomonas sp. JHK, during degradation of 4-chlorobiphenyl. The unknown metabolite of 4-chlorobenzoate led to a rapid decrease in viable counts of the laboratory-selected strains in the soil microcosm.Correspondence to: J. Havel  相似文献   

11.
Microbial degradation of dibenzothiophene (DBT) beyond 3-hydroxy-2-formylbenzothiophene (HFBT), a commonly detected metabolite of the Kodama pathway for DBT metabolism, and the catabolic intermediates leading to its mineralization are not fully understood. The enrichment cultures cultivated from crude oil contaminated soil led to isolation of ERI-11; a natural mixed culture, selected for its ability to deplete DBT in basal salt medium (BSM). A bacterial strain isolated from ERI-11, and tentatively named A11, degraded more than 90 % of the initial DBT (270 µM), present as the sole carbon and sulfur source, in 72 h. Gas chromatography–mass spectrophotometry (GC–MS) analyses of the DBT degrading A11 culture medium extracts led to detection of HFBT. The metabolite HFBT, produced using A11, was used in degradation assays to evaluate its metabolism by the bacteria isolated in this study. Ultra violet–visible spectrophotometry and high-performance liquid chromatography analyses established the ability of the strain A11 to deplete HFBT, present as the sole sulfur and carbon source in BSM. GC–MS analyses showed the presence of 2-mercaptobenzoic acid in the HFBT degrading A11 culture extracts. The findings in this study establish that the environmental isolate A11 possesses the metabolic capacity to degrade DBT beyond the metabolite HFBT. The compound 2-mercaptobenzoic acid is an intermediate formed on HFBT degradation by A11.  相似文献   

12.
A 2-kg-capacity rotating-drum reactor was used for biological conversion of nearly insoluble organic contaminants in soil. The rotating motion allowed effective operation at a solids content of over 60% by weight. A mixed bacterial culture was used to degrade anthracene that had been impregnated into a representative high-clay soil. The activity of the culture was sustained over a period of months in repeated batch operation, in which fresh soil was inoculated with 20% spent slurry from the previous run. Maximum degradation rates of 100–150 mg anthracene (kg soil)–1 day–1 were achieved throughout the experiments. Evolution of carbon dioxide from the bioreactor showed that degradation and mineralization of anthracene occurred simultaneously, and that 55% of the anthracene was mineralized. When the culture was switched from anthracene as sole carbon source to a mixture of three polynuclear aromatic hydrocarbons, the culture was able to degrade each of these in the sequence: anthracene, phenanthrene and finally pyrene.  相似文献   

13.
Bacteria degrading a very long-chain alkane, n-tetracosane, were isolated from enrichment culture of soil in Okinawa. Phylogenetic analysis of their16S rRNA sequences revealed that they belong to classes Gammaproteobacteria and Actinomycetes. Three isolates belonging to the genera Acinetobacter sp., Pseudomonas sp., and Gordonia sp. showed a stable growth on n-tetracosane and had a wide range of assimilation of aliphatic hydrocarbons from C12 to C30, while not on alkanes shorter than C8. Of the isolates, Gordonia sp. degraded oil tank sludge hydrocarbons efficiently by solving the sludge in a hydrophobic solvent, while Acinetobacter sp. showed little degradation, possibly due to the difference in the mechanism of hydrophobic substrate incorporation between proteobacteria and actinobacteria. The data suggested that non-heme di-iron monooxygenases of the AlkB-type, not bacterial CYP153 type cytochrome P450 alkane hydroxylase, was involved in the alkane degradation.  相似文献   

14.
A stable microbial population, consisting of seven bacterial strains and three yeast strains, was selected in batch cultures on a mixture of ortho and meta-xylene and butyl acetate as the sole source of carbon and energy. This population can completely degrade up to 10 g/L of a mixture of these xenobiotics (70% xylene and 30% butyl acetate wt/wt) in a two-phase aqueous-silicone oil system (70%/30% vol/vol) within 96 h, while for the usual one-phase system very low growth degradation rates were observed. Further organic solvents were tested and finally, silicon oil was selected as the best organic phase for such a two-phase system. With periodical pH adjustments to 6.0 in fed-batch mode, the culture showed a global degradation rate of 63 mg L-1 h-1.  相似文献   

15.
Degradation of the phenylurea herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) and several phenylurea and aniline metabolites was studied in agricultural soils previously exposed to isoproturon. The potential for degradation of the demethylated metabolite 3-(4-isopropylphenyl)-1-methylurea in the soils was much higher compared to isoproturon. In the most active soil only 6% of added 14C-labelled isoproturon was mineralised to 14C2 within 20 days while in the same period 45% of added 14C-labelled 3-(4-isopropylphenyl)-1-methylurea was mineralized. This indicates that the initial N-demethylation may be a limiting step in the complete mineralization of isoproturon. Repeated addition of 3-(4-isopropylphenyl)-1-methylurea to the soil and further subculturing in mineral medium led to a highly enriched mixed bacterial culture with the ability to mineralize 3-(4-isopropylphenyl)-1-methylurea.The culture did not degrade either isoproturon or the didemethylatedmetabolite 3-(4-isopropylphenyl)-urea when provided as sole source of carbon and energy. The metabolite 4-isopropyl-aniline was also degraded and utilised for growth, thus indicating that 3-(4-isopropylphenyl)-1-methylurea is degraded byan initial cleavage of the methylurea-group followed by mineralizationof the phenyl-moiety. Several attempts were made to isolate pure bacterial cultures degrading 3-(4-isopropylphenyl)-1-methylurea or 4-isopropyl-aniline,but they were not successful.  相似文献   

16.
An anaerobic culture (1MN) was enriched with 1-methylnaphthalene as sole source of carbon and electrons and Fe(OH)3 as electron acceptor. 1-Naphthoic acid was produced as a metabolite during growth with 1-methylnaphthalene while 2-naphthoic acid was detected with naphthalene and 2-methylnaphthalene. This indicates that the degradation pathway of 1-methylnaphthalene might differ from naphthalene and 2-methylnaphthalene degradation in sulfate reducers. Terminal restriction fragment length polymorphism and pyrosequencing revealed that the culture is mainly composed of two bacteria related to uncultured Gram-positive Thermoanaerobacteraceae and uncultured gram-negative Desulfobulbaceae. Stable isotope probing showed that a 13C-carbon label from 13C10-naphthalene as growth substrate was mostly incorporated by the Thermoanaerobacteraceae. The presence of putative genes involved in naphthalene degradation in the genome of this organism was confirmed via assembly-based metagenomics and supports that it is the naphthalene-degrading bacterium in the culture. Thermoanaerobacteraceae have previously been detected in oil sludge under thermophilic conditions, but have not been shown to degrade hydrocarbons so far. The second member of the community belongs to the Desulfobulbaceae and has high sequence similarity to uncultured bacteria from contaminated sites including recently proposed groundwater cable bacteria. We suggest that the gram-positive Thermoanaerobacteraceae degrade polycyclic aromatic hydrocarbons while the Desulfobacterales are mainly responsible for Fe(III) reduction.  相似文献   

17.
Ten bacterial strains were isolated by enrichment culture, using as carbon sources either aliphatics or an aromatic-polar mixture. Oxygen uptake rate was used as a criterion to determine culture transfer timing at each enrichment stage. Biodegradation of aliphatics (10,000 mg L(-1)) and an aromatic-polar mixture (5000 mg L(-1), 2:1) was evaluated for each of the bacterial strains and for a defined culture made up with a standardized mixture of the isolated strains. Degradation of total hydrocarbons (10,000 mg L(-1)) was also determined for the defined mixed culture. Five bacterial strains were able to degrade more than 50% of the aliphatic fraction. The most extensive biodegradation (74%) was obtained with strain Bs 9A, while strains Ps 2AP and UAM 10AP were able to degrade up to 15% of the aromatic-polar mixture. The defined mixed culture degraded 47% of the aliphatics and 6% of the aromatic-polar mixture. The defined mixed culture was able to degrade about 40% of the aliphatic fraction and 26% of the aromatic fraction when grown in the presence of total hydrocarbons, while these microorganisms did not consume the polar hydrocarbons fraction. The proposed strategy that combines enrichment culture together with oxygen uptake rate allowed the isolation of bacterial strains that are able to degrade specific hydrocarbons fractions at high consumption rates.  相似文献   

18.
The aim of this work was to evaluate the effect of keratinous waste addition on oil-hydrocarbon removal, through a mixed culture of oil-degrading bacteria, with the ability to secrete keratinases. The mixed culture was grown in the media with oil, or oil supplemented with chicken-feathers as the keratinous waste. Residual oil-hydrocarbons were determined as total petroleum hydrocarbons (TPHs) and oil fractions and then quantified by GC–FID and GC–MS.Results showed that in presence of the keratinous waste, the removal of oil-hydrocarbons was 57,400 mg l?1, meanwhile the treatment without waste presented an oil-hydrocarbons removal of 35,600 mg l?1. The aliphatic fraction was the most removed in both treatments. In addition, chromatographic profiles indicated that the aliphatic fraction showed different degradation pattern; in the presence of keratinous wastes, the C18 to C28 compounds were preferably removed over the C10 to C17. The addition of keratinous waste not only improved the oil-hydrocarbons removal but, it changed the removal pattern of the target hydrocarbons.  相似文献   

19.
Summary Enrichment cultures from oil-contaminated beach material from Prince William Sound, Alaska, generated both a mixed bacterial community of indigenous, oil-degrading marine microorganisms and a pure culture oil-degrader, strain EI2V. The mixed and axenic cultures were used in comparative shake flask studies of inoculation on biodegradation of Prudhoe Bay crude oil. Within 12 h following inoculation of homogenized, oiled beach material with the mixed culture, total CO2 production was increased 2-fold relative to a noninoculated control. Moreover, measurements of phenanthrene degradation (as determined by the release of14CO2 from [9-14C]phenanthrene) showed a 2-or 3-fold greater degradation when inoculated with either strain EI2V or with the mixed culture, respectively. However, as medium was replaced by a simulated tidal cycle, the observed stimulation of CO2 production decreased, and the addition of strain EI2V had no greater effect on total CO2 production than the addition of inorganic nutrients alone. Chemical analysis of oil recovered after 7 days incubation also suggested that, while these cultures are capable of efficient biodegradation of Prudhoe Bay crude in liquid culture, inoculation of beach material with high numbers of these microorganisms had little effect on the rate and extent of biodegradation of weathered crude oil. Overall, the sustained stimulatory effect was no greater than that observed with the addition of inorganic nutrients alone.  相似文献   

20.
王虎  吴玲玲  周立辉  胡妍妍  马小魁 《生态学报》2014,34(11):2907-2915
从陕北地区石油污染土壤中分离鉴定得到两株不动杆菌属(Acinetobacter sp.)的高效石油降解菌A.sp 1和A.sp 2,分别从盐浓度、pH值、氮源、磷源和接种量等因素进行研究以确定其最佳石油降解条件,并进一步通过GC-MS(Gas ChromatographyMass Spectrometer)方法分析其在最佳条件下对原油组分的不同降解性能。结果显示:A.sp 1在盐浓度为1%、pH值为6—7、磷源为KH2PO4和K2HPO4、氮源为尿素和接种量为4%的条件下,最高降解率可达到60%。A.sp 2在盐浓度为1%、pH值为7—9、磷源为KH2PO4和K2HPO4、氮源为硝酸铵和接种量为8%的条件下,最高降解率可达到67%。GC-MS分析结果表明,菌株A.sp 1对石油烃类C21—C25有明显的降解效果,菌株A.sp 2对石油烃类C20—C30的降解效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号