首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neutral pro tease of Bacillus subtilis var. amylosacchariticus was photooxidized in the presence of methylene blue, by which treatment the enzyme was rapidly inactivated. The inactive enzyme was digested with endoproteinase Asp-N, the resultant peptides were separated by HPLC, and their amino acid sequences were compared with those obtained from the unmodified enzyme. Of four peptides that contained histidine residues, only the recovery of one peptide was found to be decreased by the photooxidation with the appearance of a new peptide. Comparisons of amino acid compositions and sequences between these two peptides showed that the latter peptide lacked His228 of the former one, indicating that His228was photooxidized. This result suggests that His228 is involved in the catalytic reaction of the neutral protease or interaction with substrates.  相似文献   

2.
Rabbit muscle pyruvate kinase was inactivated by 2', 3'-dialdehyde ADP with the incorporation of one molecule of reagent per enzyme subunit. The inactivated protein was digested with trypsin after reduction and carboxymethylation. The labeled peptide was isolated by gel filtration and further purified by HPLC. The peptide was sequenced both by liquid-phase and gas-phase automatic Edman degradation. A 34-residue peptide was obtained. This peptide is identical to a tryptic peptide labeled with trinitrobenzenesulfonate, isolated and sequenced by Johnson et al. (Biochem. Biophys. Res. Commun. (1979) 90, 525-530) from bovine muscle pyruvate kinase. Available evidence suggests that dialdehyde ADP labels the enzyme at the same lysine in position 25 of the peptide, as found by Johnson et al. The high homology between the isolated peptide and regions of other pyruvate kinases from low to high eukaryotes supports the idea that this peptide is related to the enzyme active site.  相似文献   

3.
Uracil analogues with appropriate substituents at the 5-position inactivated dihydropyrimidine dehydrogenase (DHPDHase). The efficiency of these inactivators was highly dependent on the size of the 5-substituent. For example, 5-ethynyluracil inactivated DHPDHase with an efficiency (kinact/Ki) that was 500-fold greater than that for 5-propynyluracil. 5-Ethynyluracil inactivated DHPDHase by initially forming a reversible complex with a Ki of 1.6 +/- 0.2 microM. This initial complex yielded inactivated enzyme with a rate constant of 20 +/- 2 min-1 (kinact). Thymine competitively decreased the apparent rate constant for inactivation of DHPDHase by 5-ethynyluracil. The absorbance spectrum of 5-ethylnyluracil-inactivated DHPDHase was different from that of reduced enzyme. These optical changes were correlated with the loss of enzymatic activity. 5-Ethynyluracil inactivated DHPDHase with a stoichiometry of 0.9 mol of inactivator per mol of active site. Enzyme inactivated with [2-14C]5-ethynyluracil retained all of the radiolabel after denaturation in 8 M urea, but lost radiolabel under acidic conditions. These results suggested that inactivation was due to covalent modification of an amino acid residue and not due to modification of a noncovalently bound prosthetic group. A radiolabeled peptide was isolated from a tryptic digest of the enzyme inactivated with [2-14C]5-ethynyluracil. The sequence of this peptide was Lys-Ala-Glu-Ala-Ser-Gly-Ala-Y-Ala-Leu-Glu-Leu-Asn-Leu-Ser-X-Pro-His-Gly- Met-Gly-Glu-Arg, where X and Y were unidentified amino acids. Since the radiolabel was lost from the peptide during the first cycle on the amino acid sequenator, the position of the radiolabeled amino acid was not determined. The amino acid residue designated by X was identified as a cysteine from previous work with DHPDHase inactivated with 5-iodouracil. In contrast to 5-ethynyluracil, 5-cyanouracil was a reversible inactivator of the enzyme. 5-Cyanouracil-inactivated enzyme slowly regained activity (t1/2 = 1.8 min) after dilution into the standard assay. DHPDHases isolated from rat, mouse, and human liver had similar sensitivities to inactivation by 5-alkynyluracils.  相似文献   

4.
Inorganic pyrophosphatase of E. coli is rapidly and irreversibly inactivated by 5-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward's reagent K). The appearance in the absorption spectrum of a maximum at 340 nm testifies to the formation of an enzyme enol ester with the inhibitor. The non-hydrolyzable substrate analog CaPP1 partly protects the enzyme from inactivation. A peptide has been isolated from a tryptic hydrolysate of inactivated enzyme which contains an amino acid residue whose modification is critical for the enzyme activity. This peptide corresponds to residues 95-104 of pyrophosphatase and contains four dicarboxylic acid residues. A peptide containing a modified glutamic acid residue was isolated from modified pyrophosphatase hydrolyzed by protease v8. This peptide represents a fragment of a tryptic modified peptide and has a Glu-Ala-Gly-Glu (residues 98-1C1) structure. It is concluded that inactivation of E. coli pyrophosphatase by Woodward's reagent K is a result of selective modification of Glu98, apparently by the most reactive dicarboxylic amino acid within the enzyme active center.  相似文献   

5.
Enterococcus sp. 812, isolated from fresh broccoli, was previously found to produce a bacteriocin active against a number of Gram-positive bacteria, including Listeria monocytogenes. Bacteriocin activity decreased slightly after autoclaving (121 °C for 15 min), but was inactivated by protease K. Mass spectrometry analysis revealed the bacteriocin mass to be approximately 4,521.34 Da. N-terminal amino acid sequencing yielded a partial sequence, NH2-ATYYGNGVYXDKKKXWVEWGQA, by Edman degradation, which contained the consensus class IIa bacteriocin motif YGNGV in the N-terminal region. The obtained partial sequence showed high homology with some enterococcal bacteriocins; however, no identical peptide or protein was found. This peptide was therefore considered to be a novel bacteriocin produced by Enterococcus sp. 812 and was termed enterocin T.  相似文献   

6.
A serine proteinase (ProA, EC 3.4.22.9) and two metalloendopeptidases (ProB, EC 3.4.99.32 and ProC, 3.4.24.4), have been purified to homogeneity from the fruiting bodies of Pleurotus ostreatus. ProA is a serine proteinase with a mass of 30 kDa, which has amidolytic and esterolytic activities besides proteolysis and catalyzes preferential cleavage of the peptide bonds involving the carboxyl groups of hydrophobic amino acid residues in oxidized bovine insulin B chain. The N-terminal amino acid sequence was VTQTNAPWGLSRL.

ProB is a zinc-enzyme with a mass of 18 kDa, which is devoid of lysine, and its N-terminal sequence was ATFVGCSATRQ. The enzyme is inactivated completely by EDTA and 1,10-phenanthroline, and Zn2+-depleted ProB can regain the activity with Zn2+, Co2+, or Mn2+. Specific cleavage of Pro29-LYS30 in oxidized bovine insulin B chain, preferential generation of lysylpeptides from proteins, and a high susceptibility of polylysine suggest that ProB splits specifically the peptide bonds involving the α-amino group of lysyl residues.

ProC is a metalloendopeptidase of a mass of 42.5 kDa, and Zn2+ was the most effective divalent metal ion to activate the EDTA-inactivated enzyme.  相似文献   

7.
Chloramphenicol acetyltransferase (EC 2.3.1.28) specified by the fi? R-factor (type II) is highly sensitive to sulfhydryl reagents. When this variant was treated with stoichiometric amounts of 2, 2′dithiobispyridine, 90% of the enzymatic activity was lost with concomitant introduction of 0.9to 1.0 thiopyridine groups per mole of enzyme protomer. In the presence of stoichiometric amounts of the substrate, chloramphenicol, the enzyme was neither inactivated nor modified by the sulfhydryl reagents. Acetyl-coenzyme A exerted no protective effects when present in the reaction mixture. The enzyme was also inactivated by cyanylation with a stoichiometric amount of 2-nitro-5-thiocyanobenzoic acid. Labeling native type II enzyme with iodo[14C]acetamide and subsequently subjecting it to peptic digestion yielded one radioactive peptide. This cysteine-containing peptide had the same sequence as that found near the cysteine close to the chloramphenicol binding site of the commonly occurring type 1 enzyme. In conclusion, this cysteine residue is essential for the catalytic activity of both types of enzyme and is located in or near the chloramphenicol binding site. It also seems that the cysteine in type II is more sensitive to sulfhydryl reagents than the homologous cysteine in type I, probably because it is more available for modification.  相似文献   

8.
Following reduction with NaBH4, carboxymethylation and cleavage with cyanogen bromide, a peptide of thirty-seven amino acid residues containing N?-pyridoxyllysine (coenzyme binding lysine) was isolated from the mitochondrial aspartate aminotransferase of pig heart by Sephadex G-75 column chromatography and then preparative polyacrylamide gel electrophoresis. The primary structure of this peptide was determined to be Ala-Tyr-Gln-Gly-Phe-Ala-Ser-Gly-Asp-Gly-Asn-Lys-Asp-Ala-Trp-Ala-Val-Arg-His-Phe-Ile-Glu-Gln-Gly-Ile-Asn-Val-Cys-Leu-Cys-Gln-Ser-Tyr-Ala-(Pxy) Lys-Asn-Met. Its structure showed a high degree of homology with the corresponding part of the cytoplasmic isozyme.  相似文献   

9.
A papain inhibitor or 22 kDa was isolated from human placenta and shown to be identical to residues Cys246-Leu373 of the third domain of human kininogen. This kininogen domain and recombinant human cystatin C were inactivated by peptide bond cleavages at hydrophobic amino acid residues due to the action of cathepsin D. These results further support the proposed role cathepsin D in the regulation of cysteine proteinase activity.  相似文献   

10.
The arginine-specific reagent 1,2-cyclohexanedione reacts selectively with the arginine residue of the C-1-phosphate-binding site of aldolase and inactivates the enzyme. The labeled peptide isolated from tryptic digests of inactivated aldolase was found to correspond to the sequence Leu-43 to Arg-56, the residue modified by cyclohexanedione being Arg-55. This peptide was absent form digests of aldolase treated in the same way but protected from inactivation by the presence of substrate, thus correlating modification of Arg-55 with loss of activity. Selective isolation ofthe peptide containing the modified arginine residue was effected by chemisorption chromatography on boric acid gel, a procedure exploiting the specific interaction of matrix-bound boric acid groups with vicinal cis-hxdroxyl groups of cyclohexanedione-modified arginine side chains.  相似文献   

11.
The inactive 50,000-dalton fragment of human plasma alpha1-proteinase inhibitor resulting from limited proteolysis of the inhibitor by Crotalus adamanteus proteinase II has been isolated and partially characterized. The amino acid composition of the inactivated inhibitor indicates the loss of a peptide fragment from the intact inhibitor. Both intact and inactivated inhibitor contain COOH-terminal lysine. However, the NH2 terminus of the intact inhibitor is Glx, whereas that of inactivated inhibitor is methionine. NH2-terminal analysis of the inactive inhibitor fragment revealed the following sequence: -Met-Phe-Leu-Glu-Ala-Ile-Pro-Met-Ser-Ile-Pro-Pro-Gln-Val-Lys-Phe-Asn. The data show that the venom proteinase has inactivated alpha1- proteinase inhibitor by cleavage of a single bond which differs from that reported for trypsin or papain.  相似文献   

12.
Syncatalytic inactivation of pig heart cytoplasmic aspartate aminotransferase by β-chloro-[U-14C]L-alanine resulted in the incorporation of radioactivity corresponding to one mole of the label per mole of the monomeric unit of the enzyme. A borohydride-reduced and then carboxymethylated preparation of the labeled enzyme was digested by trypsin. A radioactive peptide was isolated and found to contain a covalently linked pyridoxyl derivative which absorbed at 325 nm. The amino acid sequence of this peptide was Tyr-Phe-Val-Ser-Glu-Gly-Phe -Glu-Leu-Phe-Cys-Ala-Gln-Ser-Phe-Ser-Lys-Asn-Phe-Gly-Leu-Tyr-Asn-Glu-Arg. In the peptide the phosphopyridoxyl group seems to be covalently bound via alanyl moiety derived from β-chloro-L-alanine, the β-carbon atom of which is covalently linked to the ?-nitrogen atom of the lysyl residue(Lys). From a comparison with the amino acid composition of the phosphopyridoxyl peptide isolated from the tryptic digest of a borohydride-reduced holoenzyme, it was concluded that the modified lysul residue was identical to that involved in binding pyridoxal phosphate to the apoenzyme.  相似文献   

13.
Fructose-6-P binding sites of rat liver and bovine heart Fru-6-P,2-kinase:Fru-2,6-bisphosphatase were investigated with an affinity labeling reagent, N-bromoacetylethanolamine phosphate. The rat liver enzyme was inactivated 97% by the reagent in 60 min, and the rate of inactivation followed pseudo-first order kinetics. The bovine heart enzyme was inactivated 90% within 60 min, but the inactivation rate followed pseudo-first order up to 80% inactivation and then became nonlinear. The presence of fructose-6-P retarded the extent of the inactivation to approximately 40% in 60 min. In order to determine the amino acid sequence of the fructose-6-P binding site, both enzymes were reacted with N-bromo[14C]acetylethanolamine-P and digested with trypsin; radiolabeled tryptic peptides were isolated and sequenced. A single 14C-labeled peptide was isolated from the rat liver enzyme, and the amino acid sequence of the peptide was determined as Lys-Gln-Cys-Ala-Leu-Ala-Leu-Lys. A major and two minor peptides were isolated from bovine heart enzyme whose amino acid sequences were Lys-Gln-Cys-Ala-Leu-Val-Ala-Leu-Lys, Arg-Ile-Glu-Cys-Tyr-Lys, and Ile-Glu-Cys-Tyr-Lys, respectively. In all cases, N-bromoacetylethanolamine-P had alkylated the cysteine residues. The amount of bromo[14C]acetylethanolamine-P incorporated into rat liver and beef heart was 1.3 mol/mol of subunit and 2.1 mol/mol of subunit, respectively, and the incorporations in the presence of Fru-6-P were reduced to 0.34 mol/mol of subunit and 0.9 mol/mol of subunit, respectively. Thus, the main fructose-6-P binding site of rat liver and bovine heart enzymes was identical except for a single amino acid substitution of valine for alanine in the latter enzyme. This peptide corresponded to residues 105 to 113 from the N terminus of the known amino acid sequence of rat liver enzyme, but since the complete sequence of bovine heart enzyme is not known, the location of the same peptide in the heart enzyme cannot be assigned.  相似文献   

14.
A crosslinked, double-chained peptide has been isolated from calf bone collagen after digestion with crude bacterial collagenase. Initially, the 3H-labelled peptide was isolated from collagen that had been treated with [3H]-NaBH4, but an almost identical peptide was also isolated from collagen without prior reduction. After periodate oxidation of the reduced peptide the two component chains were resolved by further chromatography. Amino acid compositions showed that the peptide probably derived from an intermolecular crosslink between a carboxyterminal sequence of the collagen molecule and a sequence near the aminoterminus that previously has been shown to be the site of a glycosylated hydroxylysine residue. The crosslinking compound in the reduced peptide, hydroxylysinohydroxynorleucine, appeared to have derived mainly by reduction with borohydride of hydroxylysinooxonorleucine, the keto-amine rearranged form of the dehydro crosslink. The remaining hydroxyl group of the crosslink, the one not derived by reduction of the keto group, appeared to be glycosylated.  相似文献   

15.
Human placental estradiol 17β-dehydrogenase (E.C. 1.1.1.62) was inactivated at pH 6.3 by 3-bromo[2′-14C]acetoxy-1,3,5(10)estratrien-17-one, a known substrate. The affinity-alkylated enzyme was then hydrolyzed by trypsin. Radioactive peptides were initially isolated by gel filtration and identified according to which residue was alkylated. Tryptic peptides containing radioactive 3-carboxymethylhistidyl residues were further purified by cation-exchange chromatography. The population of these peptides varied, depending upon the conditions of enzyme inactivation. With 60 μM 3-bromo[2′-14C]acetoxy-1,3,5(10)estratrien-17-one four major peptides (a,b,c,d) each containing radioactive 3-carboxymethylhistidine, were eluted from the cation-exchange column. The alkylation of all of these peptides was completely suppressed when the enzyme was inactivated in the presence of excess estradiol-17β. The presence of equimolar NADPH during incubation greatly enhanced the alkylation of all four peptides. In the presence of NADPH, estradiol-17β most significantly decreased the formation of peptide d. Peptide d was the only peptide identified when the concentration of the alkylating steroid was lowered to 6 βM, a value approaching the Km. These observations indicate that peptide d is a histidyl-bearing peptide from the steroid-binding site which proximates the steroid A-ring. They further suggest that with the affinity labeling steroid at higher concentrations other nonspecific, hydrophobic sites on the enzyme are occupied and labeled.  相似文献   

16.
The specificity of proteinase K from Tritirachium album Limber was determined using various synthetic peptide substrates. The esterase activity against N-acylated amino acid esters indicated that the enzyme is primarily specific against aromatic or hydrophobic amino acid residues at the carboxyl side of the splitting point. Secondary interaction for hydrolysis was also studied using peptide esters or others, which showed that the enzyme activity is markedly promoted by elongating the peptide chain to the N-terminal from the splitting point. Thus, peptide chloromethyl ketone derivatives such as Cbz-Ala-Gly-PheCH2Cl inactivated the enzyme activity markedly.  相似文献   

17.
Reaction of radicals in the presence of O2, and singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, and that this can result in inactivation of thiol-dependent enzymes. The major route for the cellular removal of damaged proteins is via catabolism mediated by proteosomal and lysosomal pathways; cysteine proteases (cathepsins) play a key role in the latter system. We hypothesized that inactivation of cysteine proteases by hydroperoxide-containing oxidised proteins may contribute to the accumulation of modified proteins within cells. We show here that thiol-dependent cathepsins, either isolated or in cell lysates, are rapidly and efficiently inactivated by amino acid, peptide, and protein hydroperoxides in a time- and concentration-dependent manner; this occurs with similar efficacy to equimolar H2O2. Inactivation involves reaction of the hydroperoxide with Cys residues as evidenced by thiol loss and formation of sulfenic acid intermediates. Structurally related, non-thiol-dependent cathepsins are less readily inactivated by these hydroperoxides. This inhibition, by oxidized proteins, of the system designed to remove modified proteins, may contribute to the accumulation of damaged proteins in cells subject to oxidative stress.  相似文献   

18.
A nontoxic peptide with bradykinin-potentiating activity was isolated from the dialyzed venom of the scorpion Buthus occitanus by reverse-phase high performance liquid chromatography (RP-HPLC). The pharmacological activity of the peptide was bioassayed by its ability to potentiate added bradykinin (BK) on the isolated guinea pig ileum as well as the isolated rat uterus for contraction. Moreover, the peptide potentiates in vivo the depressor effect of BK on arterial blood pressure in the normotensive anesthetized rat. Chemical characterization of the peptide was also performed. The amino acid composition of the peptide showed 21 amino acid residues per molecule including three proline residues. The amino acid sequence of the purified peptide was confirmed by mass spectrometry. Either N- or C-terminal ends were free. The sequence does not show a homology with bradykinin-potentiating peptides isolated from either scorpion or snake venoms. Furthermore, we did not find a significant sequence homology between the sequence of the isolated peptide and any of proteins or peptides in GenPro or NBRF data banks. The peptide also inhibited angiotensin-converting enzyme (ACE), and could not serve as substrate for the enzyme. It could be concluded that the mechanism of bradykinin-potentiating peptide (BPP) activity may be due to ACE inhibition.  相似文献   

19.
1. The isolated microsome fraction of regenerating rat liver was incubated with cell sap, a source of energy and [35S]methionine, [14C]isoleucine or [14C]leucine for different periods of time, and microsomal albumin isolated. 2. The distribution of these isotopes in albumin was determined by separation of tryptic peptides from the protein. Radioactivity was measured in peptides either qualitatively by radioautography or quantitatively by labelling with both 3H and 14C. 3. A gradient of radioactivity existed at all times in albumin isolated after incubating microsomes. 4. The shorter the incubation time the fewer the peptides labelled in albumin, but the peptides with highest specific activity after short incubation times corresponded to those with highest specific activities after long incubation times. 5. Leucine released from the C-terminus of albumin had a higher specific activity than the mean specific activity of the remaining leucine residues in albumin. 6. The peptide with the highest specific activity in albumin is probably derived from the C-terminus of the protein. 7. [14C]Glutamic acid is incorporated into the N-terminus of albumin after incubating the microsome fraction with this isotopically labelled amino acid, cell sap and a source of energy. The specific activity of the N-terminal glutamic acid under these conditions is less than the mean specific activity of the remaining glutamic acid and glutamine residues in albumin. 8. The results are interpreted as reflecting a sequential synthesis of serum albumin in the isolated microsome fraction of rat liver. The direction of synthesis of albumin is from the N-terminus towards the C-terminus. 9. The bulk of incorporation of radioactive amino acid into albumin in the isolated microsome fraction is due to completion of partially completed, pre-existing peptide and polypeptide chains. A limited synthesis of new chains of albumin does, however, occur.  相似文献   

20.
Treatment of adipocytes with okadaic acid (a specific inhibitor of type 1 and 2a protein phosphatases) resulted in a rapid 8-10-fold stimulation of cell extract myelin basic protein (MBP) kinase activity (t1/2 = 10 min) and kinase activity toward a synthetic peptide RRLSSLRA (S6 peptide) (t1/2 = 5 min). Insulin brought about a smaller stimulation of these two activities (t1/2 = 2.5 min). MBP kinase activity from cells treated with okadaic acid or insulin was resolved by anion exchange chromatography into two well defined peaks; S6 peptide kinase activity was less well resolved. The two partially purified MBP kinases were inactivated by the protein tyrosine phosphatase CD45 or by protein phosphatase 2a (PP-2a). In contrast, partially purified S6 peptide kinase activity was inactivated only by PP-2a or protein phosphatase 1 (PP-1). Furthermore, a 38-kDa protein which co-eluted with one peak of MBP kinase and a 42-kDa protein which co-eluted with the other peak of MBP kinase were phosphorylated on tyrosine after treatment with okadaic acid. These findings illustrate several important points concerning regulation of MBP and S6 peptide kinases. First, these protein kinases are regulated by phosphorylation, and, second, in the absence of hormonal stimuli their activities are strongly suppressed by protein phosphatases. Lastly, the increased tyrosine phosphorylation accompanying the activation of MBP kinases following okadaic acid treatment suggests a role for PP-2a in events that are mediated by tyrosine phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号