首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Adenosine deaminases that act on RNA (ADAR) catalyze adenosine to inosine (A-to-I) editing in double-stranded RNA (dsRNA) substrates. Inosine is read as guanosine by the translation machinery; therefore A-to-I editing events in coding sequences may result in recoding genetic information. Whereas vertebrates have two catalytically active enzymes, namely ADAR1 and ADAR2, Drosophila has a single ADAR protein (dADAR) related to ADAR2. The structural determinants controlling substrate recognition and editing of a specific adenosine within dsRNA substrates are only partially understood. Here, we report the solution structure of the N-terminal dsRNA binding domain (dsRBD) of dADAR and use NMR chemical shift perturbations to identify the protein surface involved in RNA binding. Additionally, we show that Drosophila ADAR edits the R/G site in the mammalian GluR-2 pre-mRNA which is naturally modified by both ADAR1 and ADAR2. We then constructed a model showing how dADAR dsRBD1 binds to the GluR-2 R/G stem-loop. This model revealed that most side chains interacting with the RNA sugar-phosphate backbone need only small displacement to adapt for dsRNA binding and are thus ready to bind to their dsRNA target. It also predicts that dADAR dsRBD1 would bind to dsRNA with less sequence specificity than dsRBDs of ADAR2. Altogether, this study gives new insights into dsRNA substrate recognition by Drosophila ADAR.  相似文献   

2.
RNA editing that converts adenosine to inosine in double-stranded RNA (dsRNA) is mediated by adenosine deaminases acting on RNA (ADAR). ADAR1 and ADAR2 form respective homodimers, and this association is essential for their enzymatic activities. In this investigation, we set out experiments aiming to determine whether formation of the homodimer complex is mediated by an amino acid interface made through protein-protein interactions of two monomers or via binding of the two subunits to a dsRNA substrate. Point mutations were created in the dsRNA binding domains (dsRBDs) that abolished all RNA binding, as tested for two classes of ADAR ligands, long and short dsRNA. The mutant ADAR dimer complexes were intact, as demonstrated by their ability to co-purify in a sequential affinity-tagged purification and also by their elution at the dimeric fraction position on a size fractionation column. Our results demonstrated ADAR dimerization independent of their binding to dsRNA, establishing the importance of protein-protein interactions for dimer formation. As expected, these mutant ADARs could no longer perform their catalytic function due to the loss in substrate binding. Surprisingly, a chimeric dimer consisting of one RNA binding mutant monomer and a wild type partner still abolished its ability to bind and edit its substrate, indicating that ADAR dimers require two subunits with functional dsRBDs for binding to a dsRNA substrate and then for editing activity to occur.  相似文献   

3.
A-to-I RNA editing is particularly common in coding regions of squid mRNAs. Previously, we isolated a squid editing enzyme (sqADAR2) that shows a unique structural feature when compared with other ADAR2 family members: an additional double-stranded RNA (dsRNA) binding domain (dsRBD). Alternative splicing includes or excludes this motif, generating a novel or a conventional variant termed sqADAR2a and sqADAR2b, respectively. The extra dsRBD of sqADAR2a increases its editing activity in vitro. We hypothesized that the high activity is due to an increase in the affinity of the enzyme for dsRNA. This may be important because protein-RNA interactions can be influenced by physical factors. We became particularly interested in analyzing the effects of salt on interactions between sqADAR2 and RNA because squid cells have a ~3-fold higher ionic strength and proportionally more Cl(-) than vertebrate cells. To date, in vitro biochemical analyses of adenosine deamination have been conducted using vertebrate-like ionic strength buffers containing chloride as the major anion, although the vast majority of cellular anions are known to be organic. We found that squid-like salt conditions severely impair the binding affinity of conventional ADAR2s for dsRNA, leading to a decrease in nonspecific and site-specific editing activity. Inhibition of editing was mostly due to high Cl(-) levels and not to the high concentrations of K(+), Na(+), and organic anions like glutamate. Interestingly, the extra dsRBD in sqADAR2a conferred resistance to the high Cl(-) levels found in squid neurons. It does so by increasing the affinity of sqADAR2 for dsRNA by 30- or 100-fold in vertebrate-like or squid-like conditions, respectively. Site-directed mutagenesis of squid ADAR2a showed that its increased affinity and editing activity are directly attributable to the RNA binding activity of the extra dsRBD.  相似文献   

4.
5.
RNA editing by A-to-I modification has been recognized as an important molecular mechanism for generating RNA and protein diversity. In mammals, it is mediated by a family of adenosine deaminases that act on RNAs (ADARs). The large version of the editing enzyme ADAR1 (ADAR1-L), expressed from an interferon-responsible promoter, has a Z-DNA/Z-RNA binding domain at its N-terminus. We have tested the in vitro ability of the enzyme to act on a 50 bp segment of dsRNA with or without a Z-RNA forming nucleotide sequence. A-to-I editing efficiency is markedly enhanced in presence of the sequence favoring Z-RNA. In addition, an alteration in the pattern of modification along the RNA duplex becomes evident as reaction times decrease. These results suggest that the local conformation of dsRNA molecules might be an important feature for target selectivity by ADAR1 and other proteins with Z-RNA binding domains.  相似文献   

6.
7.
The dsRNA-activated protein kinase (PKR) plays a major role in the cellular response to viral infection. PKR contains an N-terminal dsRNA binding domain (dsRBD) and a C-terminal kinase domain. The dsRBD consists of two tandem copies of a conserved double-stranded RNA binding motif, dsRBM1 and dsRBM2. dsRNA binding is believed to activate PKR by inducing dimerization and subsequent autophosphorylation reactions. We have characterized the function of the dsRBD by assessing the binding of dsRBM1 and dsRBD to a series of dsRNA sequences ranging from 15 to 45 bp. For dsRBM1, the binding stoichiometries agree with an overlapping ligand binding model where the motif binds to multiple faces of the dsRNA duplex and overlaps along the helical axis. Similar behavior is observed for a dsRBD containing both dsRBM1 and dsRBM2 for sequences up to 30 bp; however, the binding affinity is enhanced 30-fold. Longer dsRNA sequences exhibit lower-than-expected stoichiometries, indicating a change in binding mode. NMR spectroscopy was used to define the regions of the dsRBD that interact with dsRNA. dsRNA binding induces exchange broadening of cross-peaks in 1H-15N HSQC spectra. For a 20 bp dsRNA, the resonances most affected map to the known dsRNA binding regions of dsRBM1 as well as the N-terminus of dsRBM2. For a longer 40 bp sequence, additional regions of dsRBM2 exhibit enhanced broadening. These data support a model in which dsRBM1 plays the dominant role in binding short dsRNA sequences and dsRBM2 makes additional interactions with the longer sequences capable of activating PKR.  相似文献   

8.
The RNA-editing enzyme ADAR1 is a double-stranded RNA (dsRNA) binding protein that modifies cellular and viral RNA sequences by adenosine deamination. ADAR1 has been demonstrated to play important roles in embryonic erythropoiesis, viral response, and RNA interference. In human hepatitis virus infection, ADAR1 has been shown to target viral RNA and to suppress viral replication through dsRNA editing. It is not clear whether this antiviral effect of ADAR1 is a common mechanism in response to viral infection. Here, we report a proviral effect of ADAR1 that enhances replication of vesicular stomatitis virus (VSV) through a mechanism independent of dsRNA editing. We demonstrate that ADAR1 interacts with dsRNA-activated protein kinase PKR, inhibits its kinase activity, and suppresses the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) phosphorylation. Consistent with the inhibitory effect on PKR activation, ADAR1 increases VSV infection in PKR+/+ mouse embryonic fibroblasts; however, no significant effect was found in PKR-/- cells. This proviral effect of ADAR1 requires the N-terminal domains but does not require the deaminase domain. These findings reveal a novel mechanism of ADAR1 that increases host susceptibility to viral infection by inhibiting PKR activation.  相似文献   

9.
Adenosine deaminases acting on RNA (ADAR) convert adenosine residues into inosines in double-stranded RNA. Three vertebrate ADAR gene family members, ADAR1, ADAR2, and ADAR3, have been identified. The catalytic domain of all three ADAR gene family members is very similar to that of Escherichia coli cytidine deaminase and APOBEC-1. Homodimerization is essential for the enzyme activity of those cytidine deaminases. In this study, we investigated the formation of complexes between differentially epitope-tagged ADAR monomers by sequential affinity chromatography and size exclusion column chromatography. Both ADAR1 and ADAR2 form a stable enzymatically active homodimer complex, whereas ADAR3 remains as a monomeric, enzymatically inactive form. No heterodimer complex formation among different ADAR gene family members was detected. Analysis of HeLa and mouse brain nuclear extracts suggested that endogenous ADAR1 and ADAR2 both form a homodimer complex. Interestingly, endogenous ADAR3 also appears to form a homodimer complex, indicating the presence of a brain-specific mechanism for ADAR3 dimerization. Homodimer formation may be necessary for ADAR to act as active deaminases. Analysis of dimer complexes consisting of one wild-type and one mutant monomer suggests functional interactions between the two subunits during site-selective RNA editing.  相似文献   

10.
During viral infection, phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) by the interferon-induced RNA-dependent protein kinase, PKR, leads to inhibition of translation initiation and viral proliferation. Activation of PKR is mediated by association of virally encoded double-stranded RNAs (dsRNAs) with two dsRNA binding domains (dsRBDs) located in the N-terminus of PKR. To better understand the molecular mechanisms regulating PKR, we characterized the activities of wild-type and mutant versions of human PKR expressed and purified from yeast. The catalytic rate of eIF2alpha phosphorylation by our purified PKR was increased in response to dsRNA, but not single-stranded RNA or DNA, consistent with the properties previously described for PKR purified from mammalian sources. While both dsRBD1 and dsRBD2 were required for activation of PKR by dsRNA, only deletion of dsRBD1 severely reduced the basal eIF2alpha kinase activity. Removal of as few as 25 residues at the C-terminal junction of dsRBD2 dramatically increased eIF2alpha kinase activity and characterization of larger deletions that included dsRBD1 demonstrated that removal of these negative-acting sequences could bypass the dsRBD1 requirement for in vitro phosphorylation of eIF2alpha. Heparin, a known in vitro activator of PKR, enhanced eIF2alpha phosphorylation by PKR mutants lacking their entire N-terminal sequences, including the dsRBDs. The results indicate that induction of PKR activity is mediated by multiple mechanisms, one of which involves release of inhibition by negative-acting sequences in PKR.  相似文献   

11.
Members of the family of adenosine deaminases acting on RNA (ADARs) can catalyze the hydrolytic deamination of adenosine to inosine and thereby change the sequence of specific mRNAs with highly double-stranded structures. The ADARs all contain one or more repeats of the double-stranded RNA binding motif (DRBM). By both in vitro and in vivo assays, we show that the DRBMs of rat ADAR2 are necessary and sufficient for dimerization of the enzyme. Bioluminescence resonance energy transfer (BRET) demonstrates that ADAR2 also exists as dimers in living mammalian cells and that mutation of DRBM1 lowers the dimerization affinity while mutation of DRBM2 does not. Nonetheless, the editing efficiency of the GluR2 Q/R site depends on a functional DRBM2. The ADAR2 DRBMs thus serve differential roles in RNA dimerization and GluR2 Q/R editing, and we propose a model for RNA editing that incorporates the new findings.  相似文献   

12.
13.
The ADAR family of RNA-editing enzymes deaminates adenosines within RNA that is completely or largely double stranded. In mammals, most of the characterized substrates encode receptors involved in neurotransmission, and these substrates are thought to be targeted by the mammalian enzymes ADAR1 and ADAR2. Although some ADAR substrates are deaminated very promiscuously, mammalian glutamate receptor B (gluR-B) pre-mRNA is deaminated at a few specific adenosines. Like most double-stranded RNA (dsRNA) binding proteins, ADARs bind to many different sequences, but few studies have directly measured and compared binding affinities. We have attempted to determine if ADAR deamination specificity occurs because the enzymes bind to targeted regions with higher affinities. To explore this question we studied binding of rat ADAR2 to a region of rat gluR-B pre-mRNA that contains the R/G editing site, and compared a wild-type molecule with one containing mutations that decreased R/G site editing. Although binding affinity to the two sequences was almost identical, footprinting studies indicate ADAR2 binds to the wild-type RNA at a discrete region surrounding the editing site, whereas binding to the mutant appeared nonspecific.  相似文献   

14.
15.
Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1.  相似文献   

16.
17.
Members of the RNase III family of double-stranded RNA (dsRNA) endonucleases are important enzymes of RNA metabolism in eukaryotic cells. Rnt1p is the only known member of the RNase III family of endonucleases in Saccharomyces cerevisiae. Previous studies have shown that Rnt1p cleaves dsRNA capped by a conserved AGNN tetraloop motif, which is a major determinant for Rnt1p binding and cleavage. The solution structure of the dsRNA-binding domain (dsRBD) of Rnt1p bound to a cognate RNA substrate revealed the structural basis for binding of the conserved tetraloop motif by alpha-helix 1 of the dsRBD. In this study, we have analyzed extensively the effects of mutations of helix 1 residues that contact the RNA. We show, using microarray analysis, that mutations of these amino acids induce substrate-specific processing defects in vivo. Cleavage kinetics and binding studies show that these mutations affect RNA cleavage and binding in vitro to different extents and suggest a function for some specific amino acids of the dsRBD in the catalytic positioning of the enzyme. Moreover, we show that 2'-hydroxyl groups of nucleotides of the tetraloop or adjacent base pairs predicted to interact with residues of alpha-helix 1 are important for Rnt1p cleavage in vitro. This study underscores the importance of a few amino acid contacts for positioning of a dsRBD onto its RNA target, and implicates the specific orientation of helix 1 on the RNA for proper positioning of the catalytic domain.  相似文献   

18.
Specific RNA recognition of proteins containing the double-strand RNA-binding domain (dsRBD) is essential for several biological pathways such as ADAR-mediated adenosine deamination, localization of RNAs by Staufen, or RNA cleavage by RNAse III. Structural analysis has demonstrated the lack of base-specific interactions of dsRBDs with either a perfect RNA duplex or an RNA hairpin. We therefore asked whether in vitro selections performed in parallel with individual dsRBDs could yield RNAs that are specifically recognized by the dsRBD on which they were selected . To this end, SELEX experiments were performed using either the second dsRBD of the RNA-editing enzyme ADAR1 or the second dsRBD of Xlrbpa, a homolog of TRBP that is involved in RISC formation. Several RNA families with high binding capacities for dsRBDs were isolated from either SELEX experiment, but no discrimination of these RNAs by different dsRBDs could be detected. The selected RNAs are highly structured, and binding regions map to two neighboring stem-loops that presumably form stacked helices and are interrupted by mismatches and bulges. Despite the lack of selective binding of SELEX RNAs to individual dsRBDS, selected RNAs can efficiently interfere with RNA editing in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号