首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present study, a collection of 187 Enterococcus food isolates mainly originating from European cheeses were studied for the phenotypic and genotypic assessment of tetracycline (TC) resistance. A total of 45 isolates (24%) encompassing the species Enterococcus faecalis (n = 33), E. durans (n = 7), E. faecium (n = 3), E. casseliflavus (n = 1), and E. gallinarum (n = 1) displayed phenotypic resistance to TC with MIC ranges of 16 to 256 microg/ml. Eight of these strains exhibited multiresistance to TC, erythromycin, and chloramphenicol. By PCR detection, TC resistance could be linked to the presence of the tet(M) (n = 43), tet(L) (n = 16), and tet(S) (n = 1) genes. In 15 isolates, including all of those for which the MIC was 256 micro g/ml, both tet(M) and tet(L) were found. Furthermore, all tet(M)-containing enterococci also harbored a member of the Tn916-Tn1545 conjugative transposon family, of which 12 erythromycin-resistant isolates also contained the erm(B) gene. Filter mating experiments revealed that 10 E. faecalis isolates, 3 E. durans isolates, and 1 E. faecium isolate could transfer either tet(M), tet(L), or both of these genes to E. faecalis recipient strain JH2-2. In most cases in which only tet(M) was transferred, no detectable plasmids were acquired by JH2-2 but instead all transconjugants contained a member of the Tn916-Tn1545 family. Sequencing analysis of PCR amplicons and evolutionary modeling showed that a subset of the transferable tet(M) genes belonged to four sequence homology groups (SHGs) showing an internal homology of > or = 99.6%. Two of these SHGs contained tet(M) mosaic structures previously found in Tn916 elements and on Lactobacillus and Neisseria plasmids, respectively, whereas the other two SHGs probably represent new phylogenetic lineages of this gene.  相似文献   

2.
The likelihood that products prepared from raw meat and milk may act as vehicles for antibiotic-resistant bacteria is currently of great concern in food safety issues. In this study, a collection of 94 tetracycline-resistant (Tc(r)) lactic acid bacteria recovered from nine different fermented dry sausage types were subjected to a polyphasic molecular study with the aim of characterizing the host organisms and the tet genes, conferring tetracycline resistance, that they carry. With the (GTG)(5)-PCR DNA fingerprinting technique, the Tc(r) lactic acid bacterial isolates were identified as Lactobacillus plantarum, L. sakei subsp. carnosus, L. sakei subsp. sakei, L. curvatus, and L. alimentarius and typed to the intraspecies level. For a selection of 24 Tc(r) lactic acid bacterial isolates displaying unique (GTG)(5)-PCR fingerprints, tet genes were determined by means of PCR, and only tet(M) was detected. Restriction enzyme analysis with AccI and ScaI revealed two different tet(M) allele types. This grouping was confirmed by partial sequencing of the tet(M) open reading frame, which indicated that the two allele types displayed high sequence similarities (>99.6%) with tet(M) genes previously reported in Staphylococcus aureus MRSA 101 and in Neisseria meningitidis, respectively. Southern hybridization with plasmid profiles revealed that the isolates contained tet(M)-carrying plasmids. In addition to the tet(M) gene, one isolate also contained an erm(B) gene on a different plasmid from the one encoding the tetracycline resistance. Furthermore, it was also shown by PCR that the tet(M) genes were not located on transposons of the Tn916/Tn1545 family. To our knowledge, this is the first detailed molecular study demonstrating that taxonomically and genotypically diverse Lactobacillus strains from different types of fermented meat products can be a host for plasmid-borne tet genes.  相似文献   

3.
The connection between farm-generated animal waste and the dissemination of antibiotic resistance in soil microbial communities, via mobile genetic elements, remains obscure. In this study, electromagnetic induction (EMI) surveying of a broiler chicken farm assisted soil sampling from a chicken-waste-impacted site and a marginally affected site. Consistent with the EMI survey, a disparity existed between the two sites with regard to soil pH, tetracycline resistance (Tc(r)) levels among culturable soil bacteria, and the incidence and prevalence of several tet and erm genes in the soils. No significant difference was observed in these aspects between the marginally affected site and several sites in a relatively pristine regional forest. When the farm was in operation, tet(L), tet(M), tet(O), erm(A), erm(B), and erm(C) genes were detected in the waste-affected soil. Two years after all waste was removed from the farm, tet(L), tet(M), tet(O), and erm(C) genes were still detected. The abundances of tet(L), tet(O), and erm(B) were measured using quantitative PCR, and the copy numbers of each were normalized to eubacterial 16S rRNA gene copy numbers. tet(L) was the most prevalent gene, whereas tet(O) was the most persistent, although all declined over the 2-year period. A mobilizable plasmid carrying tet(L) was identified in seven of 14 Tc(r) soil isolates. The plasmid's hosts were identified as species of Bhargavaea, Sporosarcina, and Bacillus. The plasmid's mobilization (mob) gene was quantified to estimate its prevalence in the soil, and the ratio of tet(L) to mob was shown to have changed from 34:1 to 1:1 over the 2-year sampling period.  相似文献   

4.
Aims:  To determine if environmental Clostridium perfringens carry antibiotic resistance genes and if the genes are mobile.
Methods and Results:  Clostridium perfringens from water, soil and sewage (2003–2006) were screened for the tetracycline and macrolide resistance genes previously described in animal and human C. perfringens [ erm (B), erm (Q), tetA (P), tetB (P) and tet (M) genes] and the macrolide resistance mef (A) gene. Of the 160 isolates, 108 (67·5%) carried ≥1 of the six antibiotic resistance gene(s). The tetA (P), tetB (P) and tet (M) genes were in 53%, 22% and 8%, and the erm (B), erm (Q) and mef (A) genes in 26%, 1% and 18% of the isolates, respectively. The mef (A) gene and flanking regions were sequenced. The tet (M), erm (B), erm (Q) and mef (A) genes transfer independently from C. perfringens donors to the Enterococcus faecalis recipient.
Conclusions:  Six resistance genes were found in the environmental C. perfringens with the most common being the tetA (P) gene and the erm (Q) gene the least common.
Significance and Impact of the Study:  This is the first time conjugal transfer of macrolide resistance genes and/or the tet (M) gene from C. perfringens has been demonstrated. The data presented supports the hypothesis that antibiotic-resistant environmental C. perfringens are capable of acting as reservoirs for these antibiotic resistance genes.  相似文献   

5.
Nawaz M  Wang J  Zhou A  Ma C  Wu X  Moore JE  Millar BC  Xu J 《Current microbiology》2011,62(3):1081-1089
The study provides phenotypic and molecular analyses of the antibiotic resistance in lactic acid bacteria (LAB) from fermented foods in Xi'an, China. LAB strains (n = 84) belonging to 16 species of Lactobacillus (n = 73), and Streptococcus thermophilus (n = 11) were isolated and identified by sequencing their 16S rRNA gene. All strains were susceptible to ampicillin, bacitracin, and cefsulodin, and intrinsically resistant to nalidixic acid, kanamycin, and vancomycin (except L. bulgaricus, L. acidophilus, and S. thermophilus, which were susceptible to vancomycin). Some strains had acquired resistance for penicillin (n = 2), erythromycin (n = 9), clindamycin (n = 5), and tetracycline (n = 14), while resistance to gentamycin, ciprofloxacin, streptomycin, and chloramphenicol was species dependent. Minimum inhibitory concentrations presented in this study will help to review microbiological breakpoints for some of the species of Lactobacillus. The erm(B) gene was detected from two strains of each of L. fermentum and L. vaginalis, and one strain of each of L. plantarum, L. salivarius, L. acidophilus, L. animalis, and S. thermophilus. The tet genes were identified from 12 strains of lactobacilli from traditional foods. This is the first time, the authors identified tet(S) gene from L. brevis and L. kefiri. The erm(B) gene from L. fermentum NWL24 and L. salivarius NWL33, and tet(M) gene from L. plantarum NWL22 and L. brevis NWL59 were successfully transferred to Enterococcus faecalis 181 by filter mating. It was concluded that acquired antibiotic resistance is well dispersed in fermented food products in Xi'an, China and its transferability to other genera should be monitored closely.  相似文献   

6.
Danielsen M 《Plasmid》2002,48(2):98-103
The 10,877bp tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 was completely sequenced. The sequence revealed a composite structure containing DNA from up to four different sources. The replication region had homology to other plasmids of lactic acid bacteria while the tetracycline resistance region, containing a tet(M) gene, had high homology to sequences from Clostridium perfringens and Staphylococcus aureus. Within the tetracycline resistance region a Lactobacillus IS-element was found. The remaining part of the plasmid contained three open reading frames with unknown functions. The composite structure with several truncated genes suggests a recent assembly of the plasmid. This is the first sequence of an antibiotic resistance plasmid isolated from L. plantarum.  相似文献   

7.
Tn916 [carries tet(M)] is a 16.4-kb conjugative transposon that can establish itself in multiple copies in Enterococcus faecalis. To study the interaction of coresident homologous transposons during conjugation, an E. faecalis mutant defective in homologous recombination was utilized for construction of strains harboring Tn916 delta E (a derivative in which erm is substituted for tet) on the chromosome and Tn916 on a nonconjugative plasmid. When these strains were used as donors, the two transposons were able to transfer independently; however, they were found to transfer and become coestablished in the recipient up to 50% of the time. In contrast, cotransfer of a plasmid marker located outside the transposon occurred at a frequency of no greater than 0.5%. Separate experiments showed that mobilization of the nonconjugative plasmids pAM401 and pVA749 by chromosome-borne copies of Tn916 occurred only at low frequencies (generally less than 2% cotransfer). The data imply that the initiation of transposition of Tn916 results in a trans activation that is specific for homologous transposons present in the same cell.  相似文献   

8.
9.
We report the mobilization by cointegration of the gonococcal 5.2 kb beta-lactamase plasmid pSJ5.2 in an Escherichia coli background. Transfer of pSJ5.2 was measured by filter mating assays with five different conjugative plasmids from Enterobacteriaceae and the gonococcal 41 kb tet(M). Plasmid pSJ5.2 was mobilized to E. coli at frequencies of 1.7x10(-6), 9.3x10(-8) and 2.7x10(-5) by the tet(M), R64 drd-33 and N3 conjugative plasmids, respectively. Mobilization of pSJ5.2 by the 41 kb tet(M) conjugative plasmid resulted in stable Amp(R) E. coli transconjugants consisting of pSJ5.2 plasmid with an insertion located in the 2.4 kb BamHI-BamHI fragment. Mobilization of pSJ5.2 by R64drd-33 and N3 conjugative plasmids involved stable cointegrates as detected by Southern Blot with a DIG-labelled PstI-digested pSJ5.2 probe. Restriction analysis of the R64::pSJ5.2 and N3::pSJ5.2 cointegrates and Southern Blot with the pSJ5.2 probe showed that cointegrates formed by deletion of DNA regions within the 1.8 kb BamHI-HindIII fragment of pSJ5.2. The plasmid thus appears to use multiple recombination mechanisms for cointegration with different conjugative plasmids. The complete nucleotide sequence of pSJ5.2 was determined, and will be a useful tool to further investigate the molecular mechanisms leading to its cointegrative transfer.  相似文献   

10.
Aims:  The study aimed to identify the resistance genes mediating atypical minimum inhibitory concentrations (MICs) for tetracycline, erythromycin, clindamycin and chloramphenicol within two sets of representative strains of the species Lactobacillus reuteri and Lactobacillus plantarum and to characterize identified genes by means of gene location and sequencing of flanking regions.
Methods and Results:  A tet (W) gene was found in 24 of the 28 Lact. reuteri strains with atypical MIC for tetracycline, whereas four of the six strains with atypical MIC for erythromycin were positive for erm (B) and one strain each was positive for erm (C) and erm (T). The two Lact. plantarum strains with atypical MIC for tetracycline harboured a plasmid-encoded tet (M) gene. The majority of the tet (W)-positive Lact. reuteri strains and all erm -positive Lact. reuteri strains carried the genes on plasmids, as determined by Southern blot and a real-time PCR method developed in this study.
Conclusions:  Most of the antibiotic-resistant strains of Lact. reuteri and Lact. plantarum harboured known plasmid-encoded resistance genes. Examples of putative transfer machineries adjacent to both plasmid- and chromosome-located resistance genes were also demonstrated.
Significance and Impact of the Study:  These data provide some of the knowledge required for assessing the possible risk of using Lact. reuteri and Lact. plantarum strains carrying antibiotic resistance genes as starter cultures and probiotics.  相似文献   

11.
Tetracycline resistance genes in staphylococci from the skin of pigs   总被引:3,自引:0,他引:3  
Forty-seven tetracycline-resistant staphylococci from the skin of pigs were examined for genes mediating this resistance. Seventeen isolates were also resistant to minocycline and all hybridized with the tet (M.) gene; 23 carried the tet (K) gene and 10 the tet (L) gene. Three carried more than one gene and two did not hybridize with any of the three probes tested. Maps were constructed for two plasmids carrying the tet (K) gene, all were very similar in size (4.35–4–7 kb) and structure and closely resembled the plasmid pT181. Four plasmids which bore the tet (L) gene differed in size, ranging from 4.3 to 11.5 kb, and were dissimilar in structure except for the portion bearing the gene.  相似文献   

12.
Roberts MC 《Anaerobe》2003,9(2):63-69
In general bacterial antibiotic resistance is acquired on mobile elements such as plasmids, transposons and/or conjugative transposons. This is also true for many antibiotic resistant anaerobic species described in the literature. Of the 23 different tetracycline resistant efflux genes identified, tet(B), tet(K), tet(L), and tetA(P) have been found in anaerobic species and six of the ten tetracycline resistant genes coding for ribosomal protection proteins, tet(M), tet(O), tetB(P), tet(Q), tet(W), and tet(32), have been identified in anaerobes. There are now three enzymes which inactivate tetracycline, of which the tet(X) has been identified in Bacteroides though is not functional under anaerobic growth conditions. A similar situation exists with the genes conferring macrolide-lincosamide-streptogramin (MLS) resistance. Of the 26 rRNA methylase MLS resistant genes characterized, five genes; erm(B), erm(C), erm(F), erm(G), and erm(Q), have been identified in anaerobes. In contrast, no genes coding for MLS resistant efflux proteins or inactivating enzymes have been described in anaerobic species. This mini-review will summarize what is known about tetracycline and MLS resistance in genera with anaerobic species and the mobile elements associated with acquired tetracycline and/or MLS resistance genes.  相似文献   

13.
In this project, enterococci from the digestive tracts of 260 houseflies (Musca domestica L.) collected from five restaurants were characterized. Houseflies frequently (97% of the flies were positive) carried enterococci (mean, 3.1 x 10(3) CFU/fly). Using multiplex PCR, 205 of 355 randomly selected enterococcal isolates were identified and characterized. The majority of these isolates were Enterococcus faecalis (88.2%); in addition, 6.8% were E. faecium, and 4.9% were E. casseliflavus. E. faecalis isolates were phenotypically resistant to tetracycline (66.3%), erythromycin (23.8%), streptomycin (11.6%), ciprofloxacin (9.9%), and kanamycin (8.3%). Tetracycline resistance in E. faecalis was encoded by tet(M) (65.8%), tet(O) (1.7%), and tet(W) (0.8%). The majority (78.3%) of the erythromycin-resistant E. faecalis isolates carried erm(B). The conjugative transposon Tn916 and members of the Tn916/Tn1545 family were detected in 30.2% and 34.6% of the identified isolates, respectively. E. faecalis carried virulence genes, including a gelatinase gene (gelE; 70.7%), an aggregation substance gene (asa1; 33.2%), an enterococcus surface protein gene (esp; 8.8%), and a cytolysin gene (cylA; 8.8%). Phenotypic assays showed that 91.4% of the isolates with the gelE gene were gelatinolytic and that 46.7% of the isolates with the asa1 gene aggregated. All isolates with the cylA gene were hemolytic on human blood. This study showed that houseflies in food-handling and -serving facilities carry antibiotic-resistant and potentially virulent enterococci that have the capacity for horizontal transfer of antibiotic resistance genes to other bacteria.  相似文献   

14.
15.
Enterococci are the third leading cause of hospital associated infections and have gained increased importance due to their fast adaptation to the clinical environment by acquisition of antibiotic resistance and pathogenicity traits. Enterococcus faecalis harbours a pathogenicity island (PAI) of 153 kb containing several virulence factors including the enterococcal surface protein (esp). Until now only internal fragments of the PAI or larger chromosomal regions containing it have been transferred. Here we demonstrate precise excision, circularization and horizontal transfer of the entire PAI element from the chromosome of E. faecalis strain UW3114. This PAI (ca. 200 kb) contained some deletions and insertions as compared to the PAI of the reference strain MMH594, transferred precisely and integrated site-specifically into the chromosome of E. faecalis (intergenic region) and Enterococcus faecium (tRNAlys). The internal PAI structure was maintained after transfer. We assessed phenotypic changes accompanying acquisition of the PAI and expression of some of its determinants. The esp gene is expressed on the surface of donor and both transconjugants. Biofilm formation and cytolytic activity were enhanced in E. faecalis transconjugants after acquisition of the PAI. No differences in pathogenicity of E. faecalis were detected using a mouse bacteraemia and a mouse peritonitis models (tail vein and intraperitoneal injection). A 66 kb conjugative pheromone-responsive plasmid encoding erm(B) (pLG2) that was transferred in parallel with the PAI was sequenced. pLG2 is a pheromone responsive plasmid that probably promotes the PAI horizontal transfer, encodes antibiotic resistance features and contains complete replication and conjugation modules of enterococcal origin in a mosaic-like composition. The E. faecalis PAI can undergo precise intra- and interspecies transfer probably with the help of conjugative elements like conjugative resistance plasmids, supporting the role of horizontal gene transfer and antibiotic selective pressure in the successful establishment of certain enterococci as nosocomial pathogens.  相似文献   

16.
W.J. KIM, B. RAY AND M.C. JOHNSON. 1992. Plasmid profiles of wild and mutant strains of Pediococcus acidilactici M showed that a 53.7 kb plasmid (pPR72) encodes the sucrose hydrolysis trait ( Suc +) and an 11.1 kb plasmid encodes the bacteriocin production trait ( Pap +). Neither of these plasmids encode traits involving fermentation of other carbohydrates, antibiotic resistance or resistance to bacteriocin. Broad host-range plasmids (pAMβ1 and pIP501) from Enterococcus faecalis and plasmid pPR72 from Ped. acidilactici were conjugally transferred by filter mating into two strains of Ped. acidilactici. Four plasmids, ranging in size from 4.4 to 53.7 kb, were also transferred into Ped. acidilactici strains by electroporation. Optimum transformation of the 4.4 kb plasmid, pGK12, was obtained at a DNA concentration of 1 μg/220 μl. The same amount of DNA gave lower transformation frequencies as the plasmid size increased. Results of these studies indicated that both conjugation and electroporation can be used to transfer plasmid-linked traits in Ped. acidilactici strains.  相似文献   

17.
Five Enterococcus italicus strains harbouring tet genes responsible for the tetracycline resistance were subjected to plasmid profile determination studies. For four strains tested the profiles showed between three and six plasmid bands, the size of which ranged between 1.6 and 18.5 kb. Southern hybridization experiments associated tetS and tetK genes with chromosomal DNA in all strains and tetM gene with plasmids of around the same size (18.5 kb) in two of the tested strains. The ability of the new species to transfer tetM gene was studied by transfer experiments with the tetracycline-susceptible recipient strains E. faecalis JH2-2 and OG1RF; mobilization experiments were performed with E. faecalis JH 2-2 harbouring the conjugative plasmid pIP501as helper plasmid. The results obtained show that the new enterococcal species was able to acquire antibiotic resistance by conjugation, but not to transfer its plasmids to other bacteria. Further PCR and hybridization experiments carried out to assess the presence of mobilization sequences also suggest that the tetM plasmid from E. italicus is a non-mobilizable plasmid.  相似文献   

18.
The streptococcal plasmid pAM beta 1 (erythromycin resistance) was transferred via conjugation from Streptococcus faecalis to Lactobacillus plantarum and was transferred among L. plantarum strains. Streptococcus sanguis Challis was transformed with pAM beta 1 isolated from these transconjugants, and transformants harboring intact pAM beta 1 could conjugate the plasmid back to L. plantarum.  相似文献   

19.
The spontaneous recovery of activity of tet gene deleted of the promoter region was studied. Plasmid pBRS188 was used as a model for studying this problem. The plasmid has the fragment of tet gene of pBR322, from which it originates, between the sites of restriction endonucleases EcoRI and HindIII cleavage resulting in inactivation of tet promoter. E. coli cells harbouring the plasmid were shown to revert the TcR phenotype with the frequency 10(-9). The gene activation coincided with intraplasmid recombination revealed by restriction analysis. In some cases the recovery of tet gene activity coincided with the formation of multimeric plasmids.  相似文献   

20.
Conjugal plasmid transfer (pAM beta 1) in Lactobacillus plantarum.   总被引:8,自引:6,他引:2       下载免费PDF全文
The streptococcal plasmid pAM beta 1 (erythromycin resistance) was transferred via conjugation from Streptococcus faecalis to Lactobacillus plantarum and was transferred among L. plantarum strains. Streptococcus sanguis Challis was transformed with pAM beta 1 isolated from these transconjugants, and transformants harboring intact pAM beta 1 could conjugate the plasmid back to L. plantarum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号