首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
COBALT AND NITROGEN FIXATION IN LUPINUS ANGUSTIFOLIUS L.   总被引:1,自引:1,他引:0  
  相似文献   

2.
3.
4.
5.
6.
大气氮沉降与森林生态系统的氮动态   总被引:20,自引:2,他引:20  
肖辉林 《生态学报》1996,16(1):90-99
由于人类活动的影响,若干年代以来大气氮沉降明显增加。在森林地区,大气氮沉降的空间变异性由林分的位置、结构和组成树种所决定。除降雨之外,干沉降和隐藏降水也是大气氮沉降的重要形式。  相似文献   

7.
VITAMINS AND NITROGEN REQUIREMENTS OF ORCHIS LAXIFLORA LAMK.   总被引:1,自引:1,他引:0  
  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
氮素水平对花生氮素代谢及相关酶活性的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
 在大田高产条件下研究了氮素水平对花生(Arachis hypogaea)可溶性蛋白质、游离氨基酸含量及氮代谢相关酶活性的影响, 结果表明, 适当提高氮素水平既能增加花生各器官中可溶性蛋白质和游离氨基酸的含量, 又能提高硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶等氮素同化酶的活性, 使其达到同步增加; 氮素水平过高虽能提高硝酸还原酶和籽仁蛋白质含量, 但谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(GDH)的活性下降; N素施肥水平不改变花生植株各器官中可溶性蛋白质、游离氨基酸含量以及硝酸还原酶(NR)、谷氨酰胺合成酶、谷氨酸脱氢酶活性的变化趋势, 但适量施N (A2和A3处理)使花生各营养器官中GS、GDH活性提高; 氮素水平对花生各叶片和籽仁中GS、GDH活性的高低影响较大, 但对茎和根中GDH活性大小的影响较小。  相似文献   

17.
Clinical observations in 60 cases of folliculitis or pronounced activation of acne in patients taking cobalt led to conclusion that the development or aggravation of the dermal lesions were owing to ingestion of the metal. The dermal manifestations abated when use of cobalt was discontinued. Active acne is considered a contraindication to the use of vitamin-iron-mineral supplements containing cobalt.Short courses of antibiotics in addition to regular acne regimen helped shorten the course of the eruption.  相似文献   

18.
Plants were grown at temperatures of 15 and 25 ?C with two ratesof nitrogen supply. The changes in dry weight, leaf area, cellnumber, mean cell volume, soluble carbohydrate, and total nitrogenconcentration of the cotyledons, the first and second pair oftrue leaves, and the storage root were measured. Changes incell number and cell volume of the first pair of true leavesand storage root of plants were also measured at 11, 18, 25,and 32 ?C. Leaf growth before unfolding was chiefly by increase in cellnumber and after unfolding by increase in mean cell volume,while the growth of the storage root was almost entirely byincrease in cell number. The rates of cell division and cellexpansion were fastest at 25 ?C, but the initially high ratesof cell division in the terminal bud and in individual leavesdecreased rapidly and greater rates were maintained at the sub-optimaltemperatures, i.e. 15 and 18 ?C. After an initial period ofslow growth, the first-formed leaves grew faster and becamelarger at 15 than at 25 ?C. Leaves were produced, unfolded,grew faster, and became larger with increase in the externalconcentration of nitrogen, because cells divided and expandedfaster, so that nitrogen increased the number and size of cells. Sugar concentration was greater at 15 than at 25 ?C in leavesbut not in the storage root. Sugar concentration in the petiolesof the first and second pair of true leaves increased to 1.2and 2.0 per cent fresh weight respectively. Decreased nitrogensupply temporarily increased the sugar concentration of cotyledonpetioles and the seedling hypocotyl, but later decreased itin the leaves and storage root. Nitrogen concentration was greaterin the leaves and storage root at 15 than at 25 ?C with thelarger nitrogen supply. Nitrogen concentrations were similarin young leaves of all treatments but as the size of leavesincreased nitrogen concentrations decreased most rapidly at25 ?C with the smaller nitrogen supply. It is suggested that when increased leaf production and storage-rootgrowth occurs at temperatures below the growth optimum (25 ?C),they may be due to an effect of increased carbohydrate supplyon cell division and sugar storage.  相似文献   

19.
Uptake and assimilation of nitrogen and phosphorus were studied in Olisthodiscus luteus Carter. A diel periodicity in nitrate reductase activity was observed in log and stationary phase cultures; there was a 10-fold difference in magnitude between maximum and minimum rates, but other cellular features such as chlorophyll a, carbon, nitrogen, C:N ratio (atoms) · cell?1 were less variable. Ks values (~2 μM) for uptake of nitrate-N and ammonium-N were observed. Phosphorus assimilated · cell?1· day?1 varied with declining external phosphorus concentrations; growth rates <0.5 divisions · day?1 were common at <0.5 μM PO4-P. Phosphate uptake rates (Ks= 1.0–1.98 μM) varied with culture age and showed multiphasic kinetic features. Alkaline phosphatase activity was not detected. Comparisons of the nutrient dynamics of O. luteus to other phytoplankton species and the ecological implications as related to the phytoplankton community of Narragansett Bay (Rhode Island) are discussed.  相似文献   

20.
An increase of the ratio insoluble N/soluble N in potato tubertissue (var. Bintje) infected with Gibberella saubinetii orCerato-cystis fimbriata and incubated at 25° could onlybe demonstrated in samples cut from the area invaded by thefungi. In the non-infected controls some increase was foundin tissue close to the cut surface due to wound-reaction. The fungi hardly penetrated tuber tissue of var. Koopmans Blauwe,while tubers of var. Alpha were rather susceptible. Tissue ofvar. Bintje turned out to be rather resistant. Incubation at30° or 33° resulted in a more limited penetration bythe fungi. No relation exists between the value of the ratioinsoluble N/soluble N or the protein content of the host tissue,and the grade of resistance to the infection. Again, an increaseof insoluble N could only be observed in mycelium-containingsamples. The mycelia of both fungi had a ratio insoluble N/soluble Nwhich was much higher than the ratio of normal potato tissue.It was possible to explain the increase of the ratio in invadedtissue on the basis of the presence of hyphal substances. No evidence was obtained for a synthesis by the host tissueof insoluble nitrogenous compounds prior to, or concomitantwith, the increase of respiration rate after infection. To whatextent a wound-reaction played a role in the infected tuberparts is uncertain. The possibility of a simultaneous synthesisand breakdown of proteins after infection without a rise ininsoluble nitrogen is discussed. (Received February 3, 1966; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号