首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In the present study, we characterized the distribution of human cationic amino acid transporters 1 (hCAT1) and 2 (hCAT2) in healthy skin and compared it to psoriatic skin lesions by means of immunohistochemistry. Moreover, we tested the hypothesis that l-arginine and l-ornithine influence the expression and synthesis of hCAT1 and hCAT2 in cell culture experiments by means of real-time-PCR and Western blot. Immunohistochemical comparison between healthy and psoriatic skin revealed a decreased amount of hCAT1, especially in the stratum granulosum of psoriatic skin; the distribution pattern of hCAT2 was not significantly affected in psoriatic skin. Cell culture experiments showed that supraphysiological concentrations of 15 mM l-arginine (72 h) lead to a significant increase of the hCAT1-mRNA and protein expression, whereas other concentrations had no significant influence. In contrast, l-arginine concentrations of 2 mM led to a significant increase of the hCAT2B mRNA-expression after 24 h. However, 48 and 72 h revealed no significant changes and high concentrations (15 mM l-arginine) led to a significant downregulation of the hCAT2B transporter over all time points analyzed. l-ornithine had no effect on the hCAT1 expression of mRNA and protein level. On the other hand the expression of hCAT2B was significantly up regulated at a 5-mM concentration of l-ornithine at all analyzed time points. Other concentrations had no effect. For the first time, the findings yield data about hCAT1 and hCAT2 on protein-level and suggest that l-arginine is a worthwhile object of studies, which investigated l-arginine as a possible therapeutic agent to reduce psoriatic symptoms.  相似文献   

2.
3.
The cryoprotective effect of intracellular free high-mannose oligosaccharides (HMOS) on mammalian cells and proteins was examined by monitoring PC-12 cell viability and assaying protein kinase C (PKC)-epsilon activity. 1-Deoxymannojirimycin, an inhibitor of alpha-mannosidase, to cause an increase in intracellular free HMOS, significantly rescued PC-12 cells with 2-h freezing insult at -15 degrees C in a concentration (1-50mM)- and pretreatment time (48-72h)-dependent manner, as compared with unpretreated cells; full rescue from freezing injury was obtained with 1-deoxymannojirimycin at more than 25mM for 48-h pretreatment and more than 3mM for 72- and 96-h pretreatment. For PC-12 cells pretreated with 1-deoxymannojirimycin at 1mM for 72h, thawed cell viability after more than 8-w cryopreservation at -80 degrees C in 10% (v/v) dimethyl sulfoxide was much higher than that for cells without pretreatment. PKC-epsilon activity was well preserved after 16-h cryopreservation at -20 degrees C in the presence of mannose 9-N-acetylglucosamine 2 (Man9-GlcNAc2) (1 mM), an HMOS, while the activity was reduced to 15% without Man9-GlcNAc2. Collectively, the results of the present study suggest that intracellular free HMOS is a key molecule to protect mammalian cells and proteins from freezing injury; in other words, HMOS could be a new target for cryopreservation of mammalian cells and proteins.  相似文献   

4.
In previous studies we found that overexpression of the inducible form of cyclooxygenase, COX-2, in the brain exacerbated beta-amyloid (A beta) neuropathology in a transgenic mouse model of Alzheimer's disease. To explore the mechanism through which COX may influence A beta amyloidosis, we used an adenoviral gene transfer system to study the effects of human (h)COX-1 and hCOX-2 isoform expression on A beta peptide generation. We found that expression of hCOXs in human amyloid precursor protein (APP)-overexpressing (Chinese hamster ovary (CHO)-APPswe) cells or human neuroglioma (H4-APP751) cells resulting in 10-25 nM prostaglandin (PG)-E2 concentration in the conditioned medium coincided with an approximately 1.8-fold elevation of A beta-(1-40) and A beta-(1-42) peptide generation and an approximately 1.8-fold induction of the C-terminal fragment (CTF)-gamma cleavage product of the APP, an index of gamma-secretase activity. Treatment of APP-overexpressing cells with the non-selective COX inhibitor ibuprofen (1 microM, 48 h) or with the specific gamma-secretase inhibitor L-685,458 significantly attenuated hCOX-1- and hCOX-2-mediated induction of A beta peptide generation and CTF-gamma cleavage product formation. Based on this evidence, we next tested the hypothesis that COX expression might promote A beta peptide generation via a PG-E2-mediated mechanism. We found that exposure of CHO-APPswe or human embryonic kidney (HEK-APPswe) cells to PG-E2 (11-deoxy-PG-E2) at a concentration (10 nM) within the range of PG-E2 found in hCOX-expressing cells similarly promoted (approximately 1.8-fold) the generation of the CTF-gamma cleavage product of APP and commensurate A beta-(1-40) and A beta-(1-42) peptide elevation. The study suggests that expression of COXs may influence A beta peptide generation through mechanisms that involve PG-E2-mediated potentiation of gamma-secretase activity, further supporting a role for COX-2 and COX-1 in Alzheimer's disease neuropathology.  相似文献   

5.
An H2O2-resistant variant (OC14) of the HA1 Chinese hamster fibroblast cell line which demonstrates a 20-fold increase in catalase activity was utilized in the study of mechanisms responsible for cellular resistance to hydrogen peroxide, oxygen, and 4-hydroxy-2-nonenal toxicity. HA1 and OC14 cells were treated with 9 mM aminotriazole which resulted in a 60 to 80% reduction in catalase activity. Pretreatment with aminotriazole resulted in significant sensitization to the toxicity of 1-h exposures to exogenously applied H2O2, which was proportional to the reduction in catalase activity. Treatment with aminotriazole produced significant sensitization to the toxicity of 95% O2 after 45 h of O2 exposure but no sensitization to the toxicity of a 1-h exposure to 50 microM 4-hydroxy-2-nonenal. Inhibition of catalase activity by aminotriazole had no effect on the metabolism of 4-hydroxy-2-nonenal by either cell line tested. These results support the conclusion that in H2O2-resistant cells, catalase activity is a major determinant of cellular resistance to H2O2 toxicity, whereas catalase activity has a limited role in cellular resistance to an acute exposure to 95% O2 and is unrelated to cellular resistance to 4-hydroxy-2-nonenal.  相似文献   

6.
哺乳动物因为缺乏Δ-12和ω-3脂肪酸脱氢酶,不能自身合成必需的多不饱和脂肪酸.目前,通过转基因技术在哺乳动物体内表达ω-3脂肪酸脱氢酶,能将长链的n-6多不饱和脂肪酸转化成n-3多不饱和脂肪酸,造成体内长链的n-6多不饱和脂肪酸含量显著减低.本研究通过自我剪切2A肽介导Δ-12和ω-3脂肪酸脱氢酶(FAT-2和FAT-1)以及人过氧化氢酶(human catalase,hCAT)在小鼠的肌肉同时表达.结果表明,转基因小鼠肌肉中长链n-3多不饱和脂肪酸含量提高2.6倍,长链n-6多不饱和脂肪酸含量没有显著变化,而n-6/n-3比例显著降低(P < 0.01).同时蛋白质印迹检测到人过氧化氢酶hCAT在小鼠的肌肉组织中表达,且过氧化氢酶活性比野生型小鼠显著提高(P < 0.01).  相似文献   

7.
We report the expression of a high level of human cyclooxygenase-1 (hCOX-1) in mammalian cells using a novel gene amplification method known as the IR/MAR gene amplification system. IR/MAR-plasmids contain a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) and amplify autonomously without a specific induction process. In this study, the IR/MAR-plasmid pΔBN.AR1 was cotransfected with pCAG-COX1, which expresses hCOX-1, into human HEK293T cells, and G418 and blasticidin S double-resistant cells were obtained in about 1month. Real-time PCR and Western blotting revealed that the expressions of hCOX-1 mRNA and protein in both polyclonal and monoclonal cells were remarkably higher than those in only pCAG-COX1-transfected control cells. Southern blotting demonstrated the amplification of the hCOX-1 gene, and the copy number of clone #43 obtained by the cotransfection of pΔBN.AR1 and pCAG-COX1 was more than 20 copies per cell, though that of clone #14 obtained without using the IR/MAR plasmid pΔBN.AR1 was only two copies. These results indicate that a high level of hCOX-1 expression was achieved as a result of hCOX-1 gene amplification. Furthermore, the crude extract from clone #43 showed a strong COX-1 activity, and the activity was inhibited by the representative COX-1 inhibitor indomethacin, with an IC(50) value of 36nM. These results demonstrate that the IR/MAR gene amplification system is a simple but useful method for generating highly productive mammalian cells.  相似文献   

8.
9.
Colorectal cancer is the most abundant cause of cancer mortality in the Western world. Nutrition and the microbial flora are considered to have a marked influence on the risk of colorectal cancer, the formation of butyrate and other short-chain fatty acids (SCFAs) possibly playing a major role as chemopreventive products of microbial fermentation in the colon. In this study, we investigated the effects of butyrate, other SCFAs, and of a number of phenolic SCFA and trans-cinnamic acid derivatives formed during the intestinal degradation of polyphenolic constituents of fruits and vegetables on global histone deacetylase (HDAC) activity in nuclear extracts from colon carcinoma cell cultures using tert-butoxycarbonyl-lysine (acetylated)-4-amino-7-methylcoumarin (Boc-Lys(Ac)-AMC) as substrate. Inhibition of HDAC activity, e.g., by butyrate, is related to a suppression of malignant transformation and a stimulation of apoptosis of precancerous colonic cells. In nuclear extracts from HT-29 human colon carcinoma cells, butyrate was found to be the most potent HDAC inhibitor (IC(50)=0.09 mM), while other SCFAs such as propionate were less potent. In the same assay, p-coumaric acid (IC(50)=0.19 mM), 3-(4-OH-phenyl)-propionate (IC(50)=0.62 mM) and caffeic acid (IC(50)=0.85 mM) were the most potent HDAC inhibitors among the polyphenol metabolites tested. Interestingly, butyrate was also the most potent HDAC inhibitor in a whole-cell HeLa Mad 38-based reporter gene assay, while all polyphenol metabolites and all other SCFAs tested were much less potent; some were completely inactive. The findings suggest that butyrate plays an outstanding role as endogenous HDAC inhibitor in the colon, and that other SCFAs and HDAC-inhibitory polyphenol metabolites present in the colon seem to play a much smaller role, probably because of their limited levels, their marked cytotoxicity and/or their limited intracellular availability.  相似文献   

10.
11.
12.
PC12 cells, a rat pheochromocytoma cell line, have been found to express carboxypeptidase E (CPE) enzymatic activity and CPE, furin, and peptidylglycine alpha-amidating monooxygenase (PAM) mRNAs. PC12 cells secrete CPE activity in response to depolarization induced by 50 mM KCl. Short-term (1- to 3-h) treatments of PC12 cells with KCl stimulates the secretion of CPE but does not appear to stimulate the synthesis of new CPE protein, based on the measurement of CPE activity and incorporation of [35S]-Met into CPE. Also, CPE mRNA is not altered by 2-h treatments with KCl. In contrast, prolonged treatment (24-48 h) of PC12 cells with 50 mM KCl continues to stimulate the secretion of CPE activity, without altering the cellular level of CPE. Levels of CPE mRNA are significantly elevated after long-term treatment of the cells with KCl, with increases of 35% after 5 h and 55-75% after 24 to 72 h of treatment. The level of PAM mRNA is also elevated approximately 70% after 24 h of stimulation with KCl. In contrast, the mRNA levels of furin and dopamine beta-hydroxylase (DBH) do not change on treatment of PC12 cells with KCl. These findings indicate that long-term depolarization, which leads to a prolonged stimulation of PC12 cells to secrete CPE, also stimulates the synthesis of CPE and PAM but not furin or DBH.  相似文献   

13.
Kombé A  Sirois J  Goff AK 《Steroids》2003,68(7-8):651-658
Estradiol (E2), progesterone (P4), and oxytocin (OT) are important for the initiation of luteolysis in ruminants but the mechanisms involved are still poorly understood. The objective of this study was to determine if duration of exposure of bovine endometrial epithelial cells to P4 affected the response of the cells to E2. Endometrial epithelial cells, from cows at Days 1-3 of the estrous cycle, were cultured for 10, 17, and 21 days in the presence or absence of P4 (100 ng ml(-1)). After culture, each group of cells was incubated for a further 6, 12, 24 or 48 h with or without E2 (100 pg ml(-1)) and then incubated for 6 h with different doses of OT (2, 20, and 200 ng ml(-1)). E2 enhanced OT-stimulated PGF2 alpha secretion in cells cultured with P4 for 17 or 21 days, with a maximum effect after 24-h exposure, but not in cells cultured with P4 for 10 days. To determine the mechanism of action of E2, COX-1 and COX-2 were measured by Western blotting and OTR number was measured by saturation analysis. OT increased COX-2 (P<0.05), but there was no significant effect of E2 on the expression of either COX-1 or COX-2. E2 did, however, increase (P<0.001) the OTR number in cells cultured with P4 for 21 days, whereas it inhibited OTR in cells cultured for 10 days. These data show that E2 can stimulate PGF2 alpha secretion by increasing OTR expression in bovine endometrial cells in vitro, but only after exposure to P4.  相似文献   

14.
15.
Short chain fatty acids (SCFA) prevent and reverse cyclic 3',5'-adenosine monophosphate (cAMP) but not Ca(2+)-mediated Cl- secretion. Mucosal [HCO3-]i has an opposite effect on these secretagogues. We examined whether SCFA and [HCO3-]i affect cyclic 3',5'-guanosine monophosphate (cGMP)-induced secretion. Stripped segments of male Sprague-Dawley rat (Rattus norvegicus) proximal and distal colon, and cultured T84 cells were studied in Using chambers, and pHi and [HCO3-]i were determined. Mucosal [cGMP] was measured in proximal colon. In T84 cells, the increase in Cl- secretion (measured as Isc) induced by mucosal 0.25 microM Escherichia coli heat-stable enterotoxin (STa) was prevented/reversed by bilateral 50 mM Na+ butyrate (71%/73%), acetate (58%/76%), propionate (68%/73%) and (poorly metabolized) isobutyrate (80%/79%). In proximal colon in HCO3- Ringer, basal Cl- secretion was not affected by [HCO3-]i or 25 mM butyrate. Mucosal 0.25 microM STa decreased net Na+ and Cl- absorption. Bilateral but not mucosal 25 mM SCFA reversed STa-induced effects on Na+ absorption and Cl- secretion. Bilateral and mucosal 25 mM SCFA but not [HCO3-]i prevented STa-induced Cl- secretion and increases in mucosal [cGMP]. STa did not produce Cl- secretion in distal colon. It was concluded that SCFA but not [HCO3-]i can prevent and reverse cGMP-induced colonic Cl- secretion.  相似文献   

16.
Short chain fatty acids (SCFA) stimulate colonic Na+ absorption and inhibit cAMP and cGMP-mediated Cl- secretion. It is uncertain whether SCFA have equivalent effects on absorption and whether SCFA inhibition of Cl- secretion involves effects on mucosal enzymes. Unidirectional Na+ fluxes were measured across stripped colonic segments in the Ussing chamber. Enzyme activity was measured in cell fractions of scraped colonic mucosa. Mucosal 50 mM acetate, propionate, butyrate and poorly metabolized isobutyrate stimulated proximal colon Na+ absorption equally (300%). Neither 2-bromo-octanoate, an inhibitor of beta-oxidation, nor carbonic anhydrase inhibition affected this stimulation. All SCFA except acetate stimulated distal colon Na+ absorption 200%. Only one SCFA affected proximal colon cGMP phosphodiesterase (PDE) (18% inhibition by 50 mM butyrate). All SCFA at 50 mM stimulated distal colon cAMP PDE (24-43%) and decreased forskolin-stimulated mucosal cAMP content. None of the SCFA affected forskolin-stimulated adenylyl cyclase in distal colon or ST(a)-stimulated guanylyl cyclase in proximal colon. Na+-K+-ATPase in distal colon was inhibited 23-51% by the SCFA at 50 mM. We conclude that all SCFA (except acetate in distal colon) stimulate colonic Na+ absorption equally, and the mechanism does not involve mucosal SCFA metabolism or carbonic anhydrase. SCFA inhibition of cAMP-mediated secretion may involve SCFA stimulation of PDE and inhibition of Na+-K+-ATPase.  相似文献   

17.
Although the influence of selective cyclooxygenase (COX)-2 inhibitors on the proliferation of colon adenocarcinoma cells have been the subject of much investigation, relatively little research has compared the effects of different COX-2 inhibitors. Celecoxib strongly suppressed the proliferation of COX-2 expressing HT-29 cells at 10-40 microM. NS-398 and nimesulide also inhibited cell proliferation, whereas rofecoxib, meloxicam, and etodolac did not. Only celecoxib induced apoptosis of HT-29 cells, as detected on the basis of DNA fragmentation, TUNEL positivity, and caspase-3/7 activation. DNA fragmentation was also increasd in COX-2 non-expressing cell lines (SW-480 and HCT-116) by exposure to celecoxib for 6-24 h. All six COX-2 inhibitors suppressed the production of prostaglandin E(2) by HT-29 cells, suggesting that the pro-apoptotic effect of celecoxib was unrelated to inhibition of COX-2. Inactivation of Akt might explain the differential pro-apoptotic effect of these selective COX-2 inhibitors on colon adenocarcinoma cells.  相似文献   

18.
Butyrate exerts potent anti-tumor effects by inhibiting cancer cell growth and inducing apoptosis. However, the molecular mechanisms mediating these effects remain largely unknown. Using the Caco-2 cell line, a well established model of colon cancer cells, our data show that butyrate induced apoptosis (maximum 79%) is mediated via activation of the caspase-cascade. A key event was the proteolytic activation of caspase-3, triggering degradation of poly-(ADP-ribose) polymerase (PARP). Inactivation of caspase-3 with the tetrapeptide zDEVD-FMK completely inhibited the apoptotic response to butyrate. In parallel, butyrate potently up-regulated the expression of the pro-apoptotic protein bak, without changing Caco-2 cell bcl-2 expression. Butyrate-induced Caco-2 cell apoptosis was completely blocked by the addition of cycloheximide, indicating the necessity of protein synthesis. However, when this inhibitor was added at a time point where bak expression was already enhanced (12 - 16 h after butyrate stimulation), it failed to protect Caco-2 cells against apoptosis. Taken together, these data provide evidence that the molecular events involved in butyrate induced colon cancer cell apoptosis include the caspase-cascade and the mitochondrial bcl-pathway.  相似文献   

19.
Substance P (SP) is synthesized in the dorsal root ganglion (DRG) and released from primary afferent neurons to convey information regarding noxious stimuli. The effects of the proinflammatory cytokine interleukin-1 (IL-1) beta on the release of SP were investigated using primary cultured rat DRG cells. Recombinant mouse IL-1beta added to the cells at 0.1 ng/ml increased the SP-like immunoreactivity (SPLI) in the culture medium after incubation for 6 h by approximately 50% as compared with that of nontreated DRG cells. The effect of IL-1beta was Ca(2+)-dependent and significantly inhibited by 100 ng/ml IL-1 receptor-specific antagonist (IL-1r antagonist), cyclooxygenase (COX) inhibitors such as 0.1 mM aspirin, 1 microg/ml indomethacin, and 1 microM NS-398 (specific for COX-2), and 1 microM dexamethasone. Furthermore, a 1-h incubation with IL-1beta markedly increased the inducible COX-2 mRNA level, which was inhibited by an IL-1r antagonist and dexamethasone, whereas IL-1beta showed no effect on the level of constitutive COX-1 mRNA. These observations indicated that IL-1beta induced the release of SP from the DRG cells via specific IL-1 receptors, the mechanism of which might involve prostanoid systems produced by COX-2. This could be responsible for the hyperalgesic action with reference to inflammatory pain in the primary afferent neuron to spinal cord pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号