首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha 3 beta 3 hexamer was reconstituted from the alpha and beta subunits of TF1 portion of ATP synthase of thermophilic bacterium (Kagawa et al. (1989) FEBS Lett. 249, 67). The alpha 1 beta 1 heterodimer of ATP synthase was isolated by high performance liquid chromatography (HPLC) of the alpha 3 beta 3 hexamer in the presence of AT(D)P-Mg. On polyacrylamide gel electrophoresis, both bands corresponding to the dimer and hexamer showed ATPase activity. The alpha 1 beta 1 dimer was dissociated into the equal amounts of the alpha and beta monomers by sodium dodecyl sulfate. The alpha and beta monomers were practically inactive. The alpha 2 and beta 2 homodimers were not detected by electrophoresis and HPLC.  相似文献   

2.
Binding of the photoreactive ATP analog, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP), to the isolated alpha and beta subunits of TF1 and to the alpha 3 beta 3 "core" complex of the holoenzyme is described. About 1 mol of BzATP/mol of subunit was incorporated to isolated alpha and beta subunits. The incorporation of BzATP was prevented by ATP. Covalent binding of BzATP to the alpha subunit was in general somewhat lower than that observed with the beta subunit. No complex was formed upon mixing of either of the modified subunits with the complementary nontreated subunits. Covalent binding of 3 mol of BzATP/alpha 3 beta 3 complex completely inhibited ATPase activity and resulted in the dissociation of the complex. The labeled nucleotide analog was specifically incorporated into the beta subunit of the complex. The holoenzyme TF1, in contrast to the core complex, did not dissociate to the individual subunits upon covalent binding of BzATP. These results are discussed in relation to the location of the catalytic nucleotide binding site(s) and the conformation stability of the alpha 3 beta 3 core complex of TF1.  相似文献   

3.
Irradiation of outer arm dynein ATPase from sea urchin sperm tail flagella at 365-410 nm in the presence of Fe(III)-gluconate complex and ATP produces photolytic cleavage at two distinct sites on the beta heavy chain, located approximately 250 and approximately 230 kDa from its amino terminus. The former cut is close to or identical with the V1 site of the vanadate-mediated photocleavage (Gibbons, I.R., Lee-Eiford, A., Mocz, G., Phillipson, C. A., Tang, W.-J.Y., and Gibbons, B.H. (1987) J. Biol. Chem. 262, 2780-2786. The rate of photolysis shows a hyperbolic dependence on Fe(III)-gluconate concentration with half-maximal rate occurring at 23 microM at pH 6.3. In the presence of 0.1-0.5 mM Fe(III)-gluconate-ATP, approximately 58% of the beta chain becomes cleaved with a half-time of about 34 s; the remainder of the beta chain and almost all of the alpha chain are resistant to cleavage. This photolytic cleavage of the beta chain is accompanied by an approximately parallel loss of the dynein latent ATPase activity, whereas the Triton-activated ATPase is lost to a somewhat greater extent. Mg2+ concentrations above approximately 3 mM inhibit photolysis. Substitution of ADP for ATP changes the pattern of cleavage so that both the alpha and beta heavy chain undergo scission but at the 250-kDa site only. AMP, adenyl-5'-yl imidodiphosphate and Fe(II) do not support cleavage at either site. Trivalent rhodium-ATP complexes, as models of MgATP, can also catalyze photolysis of the beta chain at the 250-kDa site. These results suggest that photolysis results from the activation of an Fe(III)-ATP complex bound to the hydrolytic ATP binding site of the beta chain and that both Fe(III) cleavage sites are located close to the nucleotide binding site in the tertiary folding of the beta heavy chain. The cleavage reaction possibly involves initial photoreduction of Fe(III) bound at the Mg2+ binding site in the dynein.Fe.ATP complex, followed by covalent modification of an amino acid side chain that leads to eventual peptide scission.  相似文献   

4.
Zimmermann JL  Amano T  Sigalat C 《Biochemistry》1999,38(46):15343-15351
The properties of the nucleotide binding sites in the isolated beta and alpha subunits of H(+)-ATPase from Bacillus PS3 (TF1) have been examined by studying the EPR properties of bound VO(2+), which is a paramagnetic probe for the native Mg2+ cation cofactor. The amino acid ligands of the VO2+ complexes with the isolated beta subunit, with the isolated alpha subunit, with different mixtures of both alpha and beta subunits, and with the catalytic alpha 3 beta 3 gamma subcomplex have been characterized by a combination of EPR, ESEEM, and HYSCORE spectroscopies. The EPR spectrum of the isolated beta subunit with bound VO2+ (1 VO2+/beta) is characterized by (51)V hyperfine coupling parameters (A( parallel) = 168 x 10(-)(4) cm(-)(1) and A( perpendicular) = 60 x 10(-)(4) cm(-)(1)) that suggest that VO2+ binds to the isolated beta subunit with at least one nitrogen ligand. Results obtained for the analogous VO2+ complex with the isolated alpha subunit are virtually identical. ESEEM and HYSCORE spectra are also reported and are similar for both complexes, indicating a very similar coordination scheme for VO2+ bound to isolated alpha and beta subunits. In the isolated beta (or alpha) subunit, the bound VO2+ cation is coordinated by one nitrogen ligand with hyperfine coupling parameters A( parallel)((14)N) = 4.44 MHz, and A( perpendicular)((14)N) = 4.3 MHz and quadrupole coupling parameters e(2)()qQ approximately 3.18 MHz and eta approximately 1. These are typical for amine-type nitrogen ligands equatorial to the VO2+ cation; amino acid residues in the TF1 beta and alpha subunits with nitrogen donors that may bind VO2+ are reviewed. VO2+ bound to a mixture of alpha and beta subunits in the presence of 200 mM Na2SO4 to promote the formation of the alpha 3 beta 3 hexamer has a second nitrogen ligand with magnetic properties similar to those of a histidine imidazole. This situation is analogous to that in the alpha 3 beta 3 gamma subcomplex and in the whole TF1 enzyme [Buy, C., Matsui, T., Andrianambinintsoa, S., Sigalat, C., Girault, G., and Zimmermann, J.-L. (1996) Biochemistry 35, 14281-14293]. These data are interpreted in terms of only partially structured nucleotide binding sites in the isolated beta and alpha subunits as compared to fully structured nucleotide binding sites in the alpha 3 beta 3 heterohexamer, the alpha 3 beta 3 gamma subcomplex, and the whole TF1 ATPase.  相似文献   

5.
Two isolated recombinant fragments from human integrin alpha(5)beta(1) encompassing the FG-GAP repeats III to VII of alpha(5) and the insertion-type domain from beta(1), respectively, are structurally well defined in solution, based on CD evidence. Divalent cation binding induces a conformational adaptation that is achieved by Ca(2+) or Mg(2+) (or Mn(2+)) with alpha(5) and only by Mg(2+) (or Mn(2+)) with beta(1). Mn(2+) bound to beta(1) is highly hydrated ( approximately 3 water molecules), based on water NMR relaxation, in agreement with a metal ion-dependent adhesion site-type metal coordination. Each fragment saturated with Mg(2+) (or Mn(2+)) binds a recombinant fibronectin ligand in an RGD-dependent manner. A conformational rearrangement is induced on the fibronectin ligand upon binding to the alpha(5), but not to the beta(1) fragment, based on CD. Ligand binding results in metal ion displacement from beta(1). Both alpha(5) and beta(1) fragments form a stable heterodimer (alpha(5)beta(1) mini-integrin) that retains ligand recognition to form a 1:1:1 ternary complex, in the presence of Mg(2+), and induces a specific conformational adaptation of the fibronectin ligand. A two-site model for RGD binding to both alpha and beta integrin components is inferred from our data using low molecular weight RGD mimetics.  相似文献   

6.
The tubulin molecule is a heterodimer composed of two polypeptide chains, designated alpha and beta; both alpha and beta exist in numerous isotypic forms, which differ in their assembly and drug binding properties. 2-(4-Fluorophenyl)-1-(2-chloro-3, 5-dimethoxyphenyl)-3-methyl-6-phenyl-4(1H)-pyridinone (IKP-104) is an antimitotic compound which inhibits polymerization and induces depolymerization of microtubules [Mizuhashi, F., et al. (1992) Jpn. J. Cancer Res. 83, 211]. Since the previous work was undertaken with isotypically unfractionated tubulin, we have investigated the interactions of IKP-104 with the isotypically purified tubulin dimers (alpha beta(II), alpha beta(III), and alpha beta(IV)). We find that IKP-104 binds to alpha beta(II) and alpha beta(III) at two classes of binding sites. However, affinities for each class of site are much weaker for alpha beta(III) than for alpha beta(II). Interestingly, the low-affinity site on alpha beta(IV) was not detectable. Its high-affinity site was weaker than those of either alpha beta(II) or alpha beta(III). In a pattern consistent with these results, IKP-104 inhibited assembly better with alpha beta(II) than with the other two dimers. Higher concentrations of IKP-104 induced formation of spiral aggregates from alpha beta(II) and alpha beta(III) but not from alpha beta(IV). Our results suggest that the interaction of IKP-104 with tubulin isotypes is very complex: alpha beta(II) and alpha beta(III) differ quantitatively in their interaction with IKP-104, and alpha beta(IV)'s interaction differs both quantitatively and qualitatively from those of the other two dimers.  相似文献   

7.
Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.  相似文献   

8.
A complex of the alpha- and beta-subunits of thermophilic ATP synthase showed about 25% of the ATPase activity of the alpha beta gamma complex. The alpha 3 beta 3 hexamer structure was analyzed by sedimentation (11.2 S) and gel filtration (310 kDa). Dilution of the alpha beta complex caused dissociation of the complex and rapid loss of ATPase activity which was restored by addition of the gamma-subunit. A previous method using urea for isolating the subunits resulted in an alpha beta complex with lower activity than that prepared by over-expression of the genes. The alpha beta-ATP complex was formed from the alpha beta complex, ADP and Pi in the presence of dimethyl sulfoxide.  相似文献   

9.
Three F1 preparations, the beef heart (MF1) and thermophilic bacterium (TF1) holoenzymes, and the alpha 3 beta 3 "core" complex of TF1 reconstituted from individually expressed alpha and beta subunits, were compared as to their kinetic and binding stoichiometric responses to covalent photoaffinity labeling with BzATP and BzADP (+/- Mg2+). Each enzyme displayed an enhanced pseudo-first order rate of photoinhibition and one-third of the sites covalent binding to a catalytic site for full inhibition, plus, but not minus Mg2+. Titration of near stoichiometric [MgBzADP]/[F1] ratios during photolysis disclosed two sequential covalent binding patterns for each enzyme; a high affinity binding corresponding to unistoichiometric covalent association concomitant with enzyme inhibition, followed by a low affinity multisite-saturating covalent association. Thus, in the absence of the structural asymmetry inducing gamma delta epsilon subunits of the holoenzyme, the sequential binding of nucleotide at putative catalytic sites on the alpha 3 beta 3 complex of any F1 appears sufficient to effect binding affinity changes. With MF1, final covalent saturation of BzADP-accessible sites was achieved with 2 mol of BzADP/mol of enzyme, but with TF1 or its alpha 3 beta 3 complex, saturation required 3 mol of BzADP/mol of enzyme. Such differential final labeling stoichiometries could arise because of the endogenous presence of 1 nucleotide already bound to one of the 3 potential catalytic sites on normally prepared MF1, whereas TF1, possessing no endogenous nucleotide, has 3 vacant BzADP-accessible sites. Kinetics measurements revealed that regardless of the incremental extent of inhibition of the TF1 holoenzyme by BzADP during photolysis, the two higher apparent Km values (approximately 1.5 x 10(-4) and approximately 10(-3) M, respectively) of the progressively inactivated incubation are unchanged relative to fully unmodified enzyme. As reported for BzATP (or BzADP) and MF1 (Ackerman, S.H., Grubmeyer, C., and Coleman, P.S. (1987) J. Biol. Chem. 262, 13765-13772), this supports the fact that the photocovalent inhibition of F1 is a one-hit one-kill phenomenon. Isoelectric focusing gels revealed that [3H]BzADP covalently modifies both TF1 and MF1 exclusively on the beta subunit, whether or not Mg2+ is present. A single 19-residue [3H]BzADP-labeled peptide was resolved from a tryptic digest of MF1, and this peptide corresponded with the one believed to contain at least a portion of the beta subunit catalytic site domain (i.e. beta Ala-338----beta Arg-356).  相似文献   

10.
Mitochondrial F1-ATPase was induced in different conformations by binding of specific ligands, such as nucleotides. Then, Fourier transform infrared spectroscopy (FT-IR) and kinetic analyses were run to evaluate the structural and functional effects of Fe(III) binding to the nucleotide-independent site. Binding of one equivalent of Fe(III) induced a localised stabilising effect on the F1-ATPase structure destabilised by a high concentration of NaCl, through rearrangements of the ionic network essential for the maintenance of enzyme tertiary and/or quaternary structure. Concomitantly, a lower response of ATPase activity to activating anions was observed. Both FT-IR and kinetic data were in accordance with the hypothesis of the Fe(III) site location near one of the catalytic sites, i.e. at the alpha/beta subunit interface.  相似文献   

11.
Co-reconstitution of subunits E and G of the yeast V-ATPase and the alpha and beta subunits of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) resulted in an alpha(3)beta(3)EG hybrid complex showing 53% of the ATPase activity of TF(1). The alpha(3)beta(3)EG oligomer was characterized by electron microscopy. By processing 40,000 single particle projections, averaged two-dimensional projections at 1.2-2.4-nm resolution were obtained showing the hybrid complex in various positions. Difference mapping of top and side views of this complex with projections of the atomic model of the alpha(3)beta(3) subcomplex from TF(1) (Shirakihara, Y., Leslie, A. G., Abrahams, J. P., Walker, J. E., Ueda, T., Sekimoto, Y., Kambara, M., Saika, K., Kagawa, Y., and Yoshida, M. (1997) Structure 5, 825-836) demonstrates that a seventh mass is located inside the shaft of the alpha(3)beta(3) barrel and extends out from the hexamer. Furthermore, difference mapping of the alpha(3)beta(3)EG oligomer with projections of the A(3)B(3)E and A(3)B(3)EC subcomplexes of the V(1) from Caloramator fervidus (Chaban, Y., Ubbink-Kok, T., Keegstra, W., Lolkema, J. S., and Boekema, E. J. (2002) EMBO Rep. 3, 982-987) shows that the mass inside the shaft is made up of subunit E, whereby subunit G was assigned to belong at least in part to the density of the protruding stalk. The formation of an active alpha(3)beta(3)EG hybrid complex indicates that the coupling subunit gamma inside the alpha(3)beta(3) oligomer of F(1) can be effectively replaced by subunit E of the V-ATPase. Our results have also demonstrated that the E and gamma subunits are structurally similar, despite the fact that their genes do not show significant homology.  相似文献   

12.
The catalytically active alpha 3 beta 3 complex, assembled as described (Miwa, K., and Yoshida, M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 6484-6487) from the isolated alpha and beta subunits of the F1-ATPase of the thermophilic bacterium PS3 (TF1), is inactivated by 7-chloro-4-nitrobenzofurazan (Nbf-Cl) with characteristics very similar to those observed when TF1, which has the subunit composition, alpha 3 beta 3 gamma delta epsilon, is inactivated by the reagent under the same conditions. Both native TF1 and the alpha 3 beta 3 complex are inactivated by 200 microM Nbf-Cl with a pseudo-first order rate constant of 3.7 x 10(-2) min-1 in the presence of 0.2 M Na2SO4 at pH 7.6 and 23 degrees C. The rate of increase in absorbance at 385 nm of reaction mixtures containing 200 microM [14C]Nbf-Cl and TF1, the wild-type alpha 3 beta 3 complex, or the mutant alpha 3(beta Y307----F)3 complex, each at 18 microM was also examined. Since the alpha 3(beta y307----F)3 complex is resistant to inactivation by Nbf-Cl, difference spectrophotometry revealed that inactivation of native TF1 and the wild-type alpha 3 beta 3 complex could be correlated with formation of about 1 mol of Nbf-O-Tyr/mol of enzyme or complex. Fractionation of peptic digests of the labeled enzyme and complexes by reversed-phase high performance liquid chromatography resolved a major radioactive peptide that was common to labeled TF1 and the labeled alpha 3 beta 3 complex but was absent in the digest of the labeled alpha 3(beta Y307----F)3 complex. This labeled peptide was shown to contain Tyr-beta 307 derivatized with [14C]Nbf-Cl by automatic amino acid sequence analyses. From these results, it is concluded that one-third of the sites' reactivity of Nbf-Cl with Tyr-beta 307 in TF1 or its equivalent in other F1-ATPases is not influenced by the presence of the gamma, delta, or epsilon subunits. It has also been shown that Tyr-307 is not modified to an appreciable extent when the isolated beta subunit is treated with [14C]Nbf-Cl under conditions in which this residue is nearly completely labeled in a single beta subunit when TF1 or the alpha 3 beta 3 complex is inactivated by the reagent.  相似文献   

13.
The interaction of 2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP) and TNP-ADP to F1-ATPase from a thermophilic bacterium PS3 (TF1) was investigated. When TNP-ADP or TNP-ATP was added to the isolated alpha or beta subunit of TF1, characteristic difference spectra were generated for each subunit. Difference spectra generated on addition of these analogs to TF1 resembled those observed for the beta subunit, indicating TNP analogs bind to the beta subunits in the molecule of TF1. Results of equilibrium dialysis showed that TNP-ADP binds to a single high affinity site on TF1 in the presence of Mg2+ with a dissociation constant of 2.2 nM. When TNP-ATP was added to TF1 in a substoichiometric molar ratio, it rapidly bound to TF1 and was slowly hydrolyzed. The hydrolysis proceeded nearly to completion without showing stable equilibrium between bound species of TNP-ATP and TNP-ADP. Similar to beef heart mitochondrial F1, this hydrolysis was greatly accelerated by the chase-addition of 100 microM ATP. However, the hydrolyzed product, TNP-ADP, remained bound on the beta subunit even after the chase.  相似文献   

14.
The trafficking of leukocytes through tissues is supported by an interaction between the beta 2 (CD18) integrins CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) and their ligand ICAM-1. The most recently identified and fourth member of the beta 2 integrins, alpha D beta 2, selectively binds ICAM-3 and does not appear to bind ICAM-1. We have reported recently that alpha D beta 2 can support eosinophil adhesion to VCAM-1. Here we demonstrate that expression of alpha D beta 2 in a lymphoid cell that does not express alpha 4 integrins confers efficient binding to VCAM-1. In addition, a soluble form of alpha D beta 2 binds VCAM-1 with greater efficiency relative to ICAM-3. The I domain of alpha D contains a binding site for VCAM-1 since recombinant alpha D I domain binds specifically to VCAM-1. In addition, alpha D mAb that block cellular binding to VCAM-1 bind the alpha D I domain. Using VCAM-1 mutants we have determined that the binding site on VCAM-1 for alpha D beta 2 overlaps with that of alpha 4++ integrins. Substitution of VCAM-1 aspartate at position 40, D40, within the conserved integrin binding site, diminishes binding to alpha D beta 2 and abrogates binding to the alpha D I domain. The corresponding integrin binding site residue in ICAM-3 is also essential to alpha D beta 2 binding. Finally, we demonstrate that alpha D beta 2 can support lymphoid cell adhesion to VCAM-1 under flow conditions at levels equivalent to those mediated by alpha 4 beta 1. These results indicate that VCAM-1 can bind to an I domain and that the binding of alpha D beta 2 to VCAM-1 may contribute to the trafficking of a subpopulation of leukocytes that express alpha D beta 2.  相似文献   

15.
A panel of monoclonal antibodies has been developed against the T alpha, T beta and T gamma subunits of bovine transducin. Two anti-T alpha antibodies from this panel (TF15 and TF16) and a third one (4A) against frog T alpha (Witt, P. L., Hamm, H. E., and Bownds, M. D. (1984) J. Gen. Physiol. 84, 251-263) were characterized. Each of these monoclonal antibodies recognizes a different region of T alpha and has a specific effect on the function of transducin. The binding of TF15 is reversibly enhanced by treating T alpha with either 1 M guanidinium chloride or, to a smaller extent, by the removal of bound guanine nucleotide. Its epitope is located in a 12-kDa tryptic fragment containing the binding site for the guanine moiety of GTP. Taken together, these results support previous observations that the conformation of T alpha is modulated by the occupancy of the guanine nucleotide binding site. In contrast to TF15, TF16 recognizes only the native form of T alpha. Its epitope resides within the central portion of the T alpha molecule. While T alpha-bound TF16 does not inhibit either pertussis toxin-catalyzed ADP-ribosylation, rhodopsin binding, or transducin subunit interaction, it blocks both the light-activated uptake of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and the GTP-dependent elution of transducin from photolyzed rhodopsin. These effects are unlikely to be caused by the occupation of the guanine nucleotide binding site by TF16 because this antibody quantitatively precipitates T alpha-GTP gamma S. We propose that bound TF16 locks T alpha in a conformation that prevents the entrance of guanine nucleotide and favors T beta gamma association. In contrast to TF16, the epitope of 4A was mapped to the amino-terminal region of T alpha. This monoclonal antibody blocks pertussis toxin-catalyzed ADP-ribosylation, GTP gamma S uptake, and T alpha-T beta gamma association. Moreover, the binding site for 4A becomes inaccessible when transducin binds to photolyzed rhodopsin. These results suggest that the inhibitory effects of 4A are due to a simultaneous steric blockage of both the interaction of T alpha with T beta gamma and their binding to photolyzed rhodopsin. The results obtained from these studies are correlated with the structure and function of T alpha.  相似文献   

16.
17.
The mechanism of inhibition and reactivation of chloroplast ATP-synthase by the fungal cyclotetrapeptide tentoxin was investigated by photolabeling experiments, binding studies, and kinetic analysis using synthetic analogues of tentoxin. The alpha-subunit of chloroplast F(1)-ATPase (CF(1)) was specifically labeled by a photoactivatable tentoxin derivative, providing the first direct evidence of tentoxin binding to the alpha-subunit, and 3D homology modeling was used to locate tentoxin in its putative binding site at the alpha/beta interface. The non-photosynthetic F(1)-ATPase from thermophilic bacterium (TF(1)) proved to be also tentoxin-sensitive, and enzyme turnover dramatically increased the rate of tentoxin binding to its inhibitory site, contrary to what was previously observed with epsilon-depleted CF(1) [Santolini, J., Haraux, F., Sigalat, C., Moal, G., and André, F. (1999) J. Biol. Chem. 274, 849-858]. We propose that tentoxin preferentially binds to an ADP-loaded alpha beta pair, and mechanically blocks the catalytic cycle, perhaps by the impossibility of converting this alpha beta pair into an ATP-loaded alpha beta pair. Using (14)C-tentoxin and selected synthetic analogues, we found that toxin binding to the tight inhibitory site of CF(1) exerts some cooperative effect on the loose reactivatory site, but that no reciprocal effect exists. When the two tentoxin-binding sites are filled in reactivated F(1)-ATPase, they do not exchange their role during catalytic turnover, indicating an impairment between nucleotide occupancy and the shape of tentoxin-binding pocket. This analysis provides a mechanical interpretation of the inhibition of F(1)-ATPase by tentoxin and a clue for understanding the reactivation process.  相似文献   

18.
19.
In crystal structures of bovine MF(1), the side chains of alpha F(357) and beta R(372) are near the adenines of nucleotides bound to noncatalytic sites. To determine if during catalysis these side chains must pass through the different arrangements in which they are present in crystal structures, the catalytic properties of the (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex of the TF(1)-ATPase were characterized before and after cross-linking the introduced cysteines with CuCl(2). The unmodified mutant enzyme hydrolyzes MgATP at 50% the rate exhibited by wild type. Detailed comparison of the catalytic properties of the double mutant enzyme before and after cross-linking with those of the wild-type subcomplex revealed the following. Before cross-linking, the (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex has less tendency than wild type to release inhibitory MgADP entrapped in a catalytic site during turnover when MgATP binds to noncatalytic sites. Following cross-linking, ATPase activity is reduced 5-fold, and inhibitory MgADP entrapped in a catalytic site during turnover does not release under conditions wherein binding of ATP to noncatalytic sites of the wild-type enzyme promotes release of MgADP from the affected catalytic site. When assayed in the presence of lauryldimethylamine oxide, which prevents turnover-dependent entrapment of inhibitory MgADP in a catalytic site, ATPase activity of the cross-linked form is 47% that of the unmodified mutant enzyme. These results suggest that, during catalysis, the side chains of alpha F(357) and beta R(372) do not pass through the extremely different relative positions in which they exist at the three noncatalytic site interfaces in crystal structures.  相似文献   

20.
3'-O-(4-Benzoyl)benzoyl ADP (BzADP) was used as a photoaffinity label for covalent binding of adenine nucleotide analogs to the nucleotide binding site(s) of the thermophilic bacterium PS3 ATPase (TF1). As with the CF1-ATPase (Bar-Zvi, D. and Shavit, N. (1984) Biochim. Biophys. Acta 765, 340-356) noncovalently bound BzADP is a reversible inhibitor of the TF1-ATPase. BzADP changes the kinetics of ATP hydrolysis from noncooperative to cooperative in the same way as ADP does, but, in contrast to the effect on the CF1-ATPase, it has no effect on the Vmax. In the absence of Mg2+ 1 mol BzADP binds noncovalently to TF1, while with Mg2+ 3 mol are bound. Photoactivation of BzADP results in the covalent binding of the analog to the nucleotide binding site(s) on TF1 and correlates with the inactivation of the ATPase. Complete inactivation of the TF1-ATPase occurs after covalent binding of 2 mol BzADP/mol TF1. Photoinactivation of TF1 by BzADP is prevented if excess of either ADP or ATP is present during irradiation. Analysis by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the Bz[3H]ADP-labeled TF1-ATPase shows that all the radioactivity is incorporated into the beta subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号