首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studer AJ  Doebley JF 《Genetics》2011,188(3):673-681
Quantitative trait loci (QTL) mapping is a valuable tool for studying the genetic architecture of trait variation. Despite the large number of QTL studies reported in the literature, the identified QTL are rarely mapped to the underlying genes and it is usually unclear whether a QTL corresponds to one or multiple linked genes. Similarly, when QTL for several traits colocalize, it is usually unclear whether this is due to the pleiotropic action of a single gene or multiple linked genes, each affecting one trait. The domestication gene teosinte branched1 (tb1) was previously identified as a major domestication QTL with large effects on the differences in plant and ear architecture between maize and teosinte. Here we present the results of two experiments that were performed to determine whether the single gene tb1 explains all trait variation for its genomic region or whether the domestication QTL at tb1 fractionates into multiple linked QTL. For traits measuring plant architecture, we detected only one QTL per trait and these QTL all mapped to tb1. These results indicate that tb1 is the sole gene for plant architecture traits that segregates in our QTL mapping populations. For most traits related to ear morphology, we detected multiple QTL per trait in the tb1 genomic region, including a large effect QTL at tb1 itself plus one or two additional linked QTL. tb1 is epistatic to two of these additional QTL for ear traits. Overall, these results provide examples for both a major QTL that maps to a single gene, as well as a case in which a QTL fractionates into multiple linked QTL.  相似文献   

2.
大白菜部分形态性状的QTL定位与分析   总被引:13,自引:0,他引:13  
于拴仓  王永健  郑晓鹰 《遗传学报》2003,30(12):1153-1160
应用352个标记位点的大白菜AFLP和RAPD图谱和一套栽培品种间杂交获得的重组自交系群体,采用复合区间作图的方法对大白菜9个形态性状进行QTL定位及遗传效应研究。在14个连锁群上检测到50个QTL:其中控制株型的QTL有5个;控制株高的QTL有6个;控制开展度的QTL有5个;控制最大叶长的QTL有7个;控制最大叶宽的QTL有4个;控制叶形指数的QTL有6个;控制中肋长的QTL有7个;控制中肋宽的QTL有4个;控制抽苔的QTL有6个。另外,估算了单个QTL的遗传贡献率和加性效应。这将为大白菜品种改良中形态性状的分子标记辅助选择提供理论依据。  相似文献   

3.
The identification of quantitative trait loci (QTLs) based on anchor markers, especially candidate genes that control a trait of interest, has been noted to increase the power of QTL detection. Since these markers can be scored as co-dominant data, they are also valuable for comparing and integrating the QTL linkage maps from diverse mapping populations. To estimate the position and effects of QTLs linked to oil yield traits in African oil palm, co-dominant microsatellites (SSR) and candidate gene-based sequence polymorphisms were applied to construct a linkage map for a progeny showing large differences in oil yield components. The progeny was genotyped for 97 SSR markers, 93 gene-linked markers, and 12 non-gene-linked SNP markers. From these, 190 segregating loci could be arranged into 31 linkage groups while 12 markers remained unmapped. Using the single marker linkage, interval mapping and multiple QTL methods, 16 putative QTLs on seven linkage groups affecting important oil yield related traits such as fresh fruit bunch yield (FFB), ratio of oil per fruit (OF), oil per bunch (OB), fruit per bunch (FB) and wet mesocarp per fruit (WMF) could be identified in the segregating population with estimated values for explained variance ranging from 12.4 % to 54.5 %. Markers designed from some candidate genes involved in lipid biosynthesis were found to be mapped near significant QTLs for various economic yield traits. Associations between QTLs and potential candidate genes are discussed.  相似文献   

4.
An F2 population of pea (Pisum sativum L.) consisting of 174 plants was analysed by restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) techniques. Ascochyta pisi race C resistance, plant height, flowering earliness and number of nodes were measured in order to map the genes responsible for their variation. We have constructed a partial linkage map including 3 morphological character genes, 4 disease resistance genes, 56 RFLP loci, 4 microsatellite loci and 2 RAPD loci. Molecular markers linked to each resistance gene were found: Fusarium wilt (6 cM from Fw), powdery mildew (11 cM from er) and pea common Mosaic virus (15 cM from mo). QTLs (quantitative traits loci) for Ascochyta pisi race C resistance were mapped, with most of the variation explained by only three chromosomal regions. The QTL with the largest effect, on chromosome 4, was also mapped using a qualitative, Mendelian approach. Another QTL displayed a transgressive segregation, i.e. the parental line that was susceptible to Ascochyta blight had a resistance allele at this QTL. Analysis of correlations between developmental traits in terms of QTL effects and positions suggested a common genetic control of the number of nodes and earliness, and a loose relationship between these traits and height.  相似文献   

5.
Much remains unknown of molecular events controlling the plant hypersensitive defense response (HR), a rapid localized cell death that limits pathogen spread and is mediated by resistance (R-) genes. Genetic control of the HR is hard to quantify due to its microscopic and rapid nature. Natural modifiers of the ectopic HR phenotype induced by an aberrant auto-active R-gene (Rp1-D21), were mapped in a population of 3,381 recombinant inbred lines from the maize nested association mapping population. Joint linkage analysis was conducted to identify 32 additive but no epistatic quantitative trait loci (QTL) using a linkage map based on more than 7000 single nucleotide polymorphisms (SNPs). Genome-wide association (GWA) analysis of 26.5 million SNPs was conducted after adjusting for background QTL. GWA identified associated SNPs that colocalized with 44 candidate genes. Thirty-six of these genes colocalized within 23 of the 32 QTL identified by joint linkage analysis. The candidate genes included genes predicted to be in involved programmed cell death, defense response, ubiquitination, redox homeostasis, autophagy, calcium signalling, lignin biosynthesis and cell wall modification. Twelve of the candidate genes showed significant differential expression between isogenic lines differing for the presence of Rp1-D21. Low but significant correlations between HR-related traits and several previously-measured disease resistance traits suggested that the genetic control of these traits was substantially, though not entirely, independent. This study provides the first system-wide analysis of natural variation that modulates the HR response in plants.  相似文献   

6.
S V Nuzhdin  C L Dilda  T F Mackay 《Genetics》1999,153(3):1317-1331
Quantitative trait loci (QTL) affecting responses and correlated responses to selection for abdominal and sternopleural bristle number have been mapped with high resolution to the X and third chromosomes. Advanced intercross recombinant isogenic chromosomes were constructed from high and low selection lines in an unselected inbred background, and QTL were detected using composite interval mapping and high density transposable element marker maps. We mapped a total of 26 bristle number QTL with large effects, which were in or immediately adjacent to intervals previously inferred to contain bristle number QTL on these chromosomes. The QTL contributing to response to selection for high bristle number were not the same as those contributing to response to selection for low bristle number, suggesting that distributions of allelic effects per locus may be asymmetrical. Correlated responses were more often attributable to loose linkage than pleiotropy or close linkage. Bristle number QTL mapping to the same locations have been inferred in studies with different parental strains. Of the 26 QTL, 20 mapped to locations consistent with candidate genes affecting peripheral nervous system development and/or bristle number. This facilitates determining the molecular basis of quantitative variation and allele frequencies by associating molecular variation at the candidate genes with phenotypic variation in bristle number in samples of alleles from nature.  相似文献   

7.
Henery ML  Wallis IR  Stone C  Foley WJ 《Oecologia》2008,156(4):847-859
The up-regulation of secondary metabolic pathways following herbivore attack and the subsequent reduction in herbivore performance have been identified in numerous woody plant species. Eucalypts constitutively express many secondary metabolites in the leaves, including terpenes and formylated phloroglucinol compounds (FPCs). We used clonal ramets from six clones of Eucalyptus grandis and two clones of E. grandis x camaldulensis to determine if methyl jasmonate (MeJA) treatment could induce changes in the foliar concentrations of either of these groups of compounds. We also used bioassays to determine if any changes in the performance of larvae of Paropsis atomaria, a chrysomelid leaf beetle, could be detected in treated ramets versus the untreated controls, thus indicating whether MeJA induced the up-regulation of defences other than terpenes or FPCs. We found no significant effects of MeJA treatment on either the foliar concentrations of terpenes and FPCs or on herbivore performance. We did, however, detect dramatic differences in larval performance between Eucalyptus clones, thereby demonstrating large variations in the levels of constitutive defence. Larval feeding on clones resistant to P. atomaria resulted in high first instar mortality and disruption of normal gregarious feeding behaviour in surviving larvae. Histological examination of larvae feeding on a resistant clone revealed damage to the midgut consistent with the action of a toxin. These findings concur with mounting evidence that most evergreen perennial plants lack foliar-induced defences and suggest that constitutively expressed secondary metabolites other than those commonly examined in studies of interactions between insect herbivores and Eucalyptus may be important in plant defence.  相似文献   

8.
The majority of biological traits are genetically complex. Mapping the quantitative trait loci (QTL) that determine these phenotypes is a powerful means for estimating many parameters of the genetic architecture for a trait and potentially identifying the genes responsible for natural variation. Typically, such experiments are conducted in a single mapping population and, therefore, have only the potential to reveal genomic regions that are polymorphic between the progenitors of the population. What remains unclear is how well the QTL identified in any one mapping experiment characterize the genetics that underlie natural variation in traits. Here we provide QTL mapping data for trichome density from four recombinant inbred mapping populations of Arabidopsis thaliana. By aligning the linkage maps for these four populations onto a common physical map, the results from each experiment were directly compared. Seven of the nine QTL identified are population specific while two were mapped in all four populations. Our results show that many lineage-specific alleles that either increase or decrease trichome density persist in natural populations and that most of this genetic variation is additive. More generally, these findings suggest that the use of multiple populations holds great promise for better understanding the genetic architecture of natural variation.  相似文献   

9.
Terpenes are a diverse group of plant secondary metabolites that mediate a plethora of ecological interactions in many plant species. Despite increasing research into the genetic control of important adaptive traits in some plant species, the genetic control of terpenes in forest tree species is still relatively poorly studied. In this study, we use quantitative genetic and quantitative trait loci (QTL) analysis to investigate the genetic control of foliar terpenes in an ecologically and commercially important eucalypt species, Eucalyptus globulus. We show a moderate to high within-family broad-sense heritability and significant genetic basis to the variation in 14 of the 16 terpenes assayed. This is the first report of QTL for terpenes in this species. Eleven QTL influenced the terpenes overall. One QTL on linkage group 6 affected six of the seven different sesquiterpenes assayed (plus one monoterpene), which, in combination with highly significant correlations between these compounds, argues that their variation is influenced by a QTL with pleiotropic effect early in the biosynthetic pathway. We examine the homology of these QTL to those found in a closely related eucalypt, Eucalyptus nitens, and provide evidence that both common and unique QTL influence terpene levels.  相似文献   

10.
A large F2 cross with 920 Japanese quail was used to map QTL for phosphorus utilization, calcium utilization, feed per gain and body weight gain. In addition, four bone ash traits were included, because it is known that they are genetically correlated with the focal trait of phosphorus utilization. Trait recording was done at the juvenile stage of the birds. The individuals were genotyped genome‐wide for about 4k SNPs and a linkage map constructed, which agreed well with the reference genome. QTL linkage mapping was performed using multimarker regression analysis in a line cross model. Single marker association mapping was done within the mapped QTL regions. The results revealed several genome‐wide significant QTL. For the focal trait phosphorus utilization, a QTL on chromosome CJA3 could be detected by linkage mapping, which was substantiated by the results of the SNP association mapping. Four candidate genes were identified for this QTL, which should be investigated in future functional studies. Some overlap of QTL regions for different traits was detected, which is in agreement with the corresponding genetic correlations. It seems that all traits investigated are polygenic in nature with some significant QTL and probably many other small‐effect QTL that were not detectable in this study.  相似文献   

11.
Wang CM  Liu P  Yi C  Gu K  Sun F  Li L  Lo LC  Liu X  Feng F  Lin G  Cao S  Hong Y  Yin Z  Yue GH 《PloS one》2011,6(8):e23632
Jatropha curcas is a potential plant species for biodiesel production. However, its seed yield is too low for profitable production of biodiesel. To improve the productivity, genetic improvement through breeding is essential. A linkage map is an important component in molecular breeding. We established a first-generation linkage map using a mapping panel containing two backcross populations with 93 progeny. We mapped 506 markers (216 microsatellites and 290 SNPs from ESTs) onto 11 linkage groups. The total length of the map was 1440.9 cM with an average marker space of 2.8 cM. Blasting of 222 Jatropha ESTs containing polymorphic SSR or SNP markers against EST-databases revealed that 91.0%, 86.5% and 79.2% of Jatropha ESTs were homologous to counterparts in castor bean, poplar and Arabidopsis respectively. Mapping 192 orthologous markers to the assembled whole genome sequence of Arabidopsis thaliana identified 38 syntenic blocks and revealed that small linkage blocks were well conserved, but often shuffled. The first generation linkage map and the data of comparative mapping could lay a solid foundation for QTL mapping of agronomic traits, marker-assisted breeding and cloning genes responsible for phenotypic variation.  相似文献   

12.
Honsdorf N  Becker HC  Ecke W 《Génome》2010,53(11):899-907
QTL mapping by association analysis has recently gained interest in plant breeding research as an alternative to QTL mapping in segregating populations from biparental crosses. In a first experiment on whole-genome association analysis in rapeseed, 684 mapped AFLP markers were tested for association with 14 traits in a set of 84 canola quality winter rapeseed cultivars. For association analysis a general linear model was used. By testing significance of marker-trait associations against a false discovery rate of 0.2, between 1 and 34 associated markers were found for 10 of the 14 traits. Taking into account linkage disequilibrium between the significant markers, these markers represent between 1 and 22 putative QTL for the respective traits. The minimum phenotypic variance explained by the QTL for the different traits ranged from 15% to 53%. A subset of 27 markers were significantly associated with two or more traits. These markers were predominantly shared between traits that were significantly correlated at the phenotypic level. The results show clearly that in rapeseed, QTL mapping by association analysis is a viable alternative to QTL mapping in segregating populations.  相似文献   

13.
The genetic architecture of Drosophila sensory bristle number   总被引:2,自引:0,他引:2  
Dilda CL  Mackay TF 《Genetics》2002,162(4):1655-1674
We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits.  相似文献   

14.
Variation in inflorescence development patterns is a central factor in the evolutionary ecology of plants. The genetic architectures of 13 traits associated with inflorescence developmental timing, architecture, rosette morphology, and fitness were investigated in Arabidopsis thaliana, a model plant system. There is substantial naturally occurring genetic variation for inflorescence development traits, with broad sense heritabilities computed from 21 Arabidopsis ecotypes ranging from 0.134 to 0.772. Genetic correlations are significant for most (64/78) pairs of traits, suggesting either pleiotropy or tight linkage among loci. Quantitative trait locus (QTL) mapping indicates 47 and 63 QTL for inflorescence developmental traits in Ler x Col and Cvi x Ler recombinant inbred mapping populations, respectively. Several QTL associated with different developmental traits map to the same Arabidopsis chromosomal regions, in agreement with the strong genetic correlations observed. Epistasis among QTL was observed only in the Cvi x Ler population, and only between regions on chromosomes 1 and 5. Examination of the completed Arabidopsis genome sequence in three QTL regions revealed between 375 and 783 genes per region. Previously identified flowering time, inflorescence architecture, floral meristem identity, and hormone signaling genes represent some of the many candidate genes in these regions.  相似文献   

15.
Identification of predictive markers in QTL regions that impact production traits in commercial populations of swine is dependent on construction of dense comparative maps with human and mouse genomes. Chromosomal painting in swine suggests that large genomic blocks are conserved between pig and human, while mapping of individual genes reveals that gene order can be quite divergent. High-resolution comparative maps in regions affecting traits of interest are necessary for selection of positional candidate genes to evaluate nucleotide variation causing phenotypic differences. The objective of this study was to construct an ordered comparative map of human chromosome 10 and pig chromosomes 10 and 14. As a large portion of both pig chromosomes are represented by HSA10, genes at regularly spaced intervals along this chromosome were targeted for placement in the porcine genome. A total of 29 genes from human chromosome 10 were mapped to porcine chromosomes 10 (SSC10) and 14 (SSC14) averaging about 5 Mb distance of human DNA per marker. Eighteen genes were assigned by linkage in the MARC mapping population, five genes were physically assigned with the IMpRH mapping panel and seven genes were assigned on both maps. Seventeen genes from human 10p mapped to SSC10, and 12 genes from human 10q mapped to SSC14. Comparative maps of mammalian species indicate that chromosomal segments are conserved across several species and represent syntenic blocks with distinct breakpoints. Development of comparative maps containing several species should reveal conserved syntenic blocks that will allow us to better define QTL regions in livestock.  相似文献   

16.
Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis   总被引:22,自引:0,他引:22  
Improving plant nitrogen (N) use efficiency or controlling soil N requires a better knowledge of the regulation of plant N metabolism. This could be achieved using Arabidopsis as a model genetic system, taking advantage of the natural variation available among ecotypes. Here, we describe an extensive study of N metabolism variation in the Bay-0 x Shahdara recombinant inbred line population, using quantitative trait locus (QTL) mapping. We mapped QTL for traits such as shoot growth, total N, nitrate, and free-amino acid contents, measured in two contrasting N environments (contrasting nitrate availability in the soil), in controlled conditions. Genetic variation and transgression were observed for all traits, and most of the genetic variation was identified through QTL and QTL x QTL epistatic interactions. The 48 significant QTL represent at least 18 loci that are polymorphic between parents; some may correspond to known genes from the N metabolic pathway, but others represent new genes controlling or interacting with N physiology. The correlations between traits are dissected through QTL colocalizations: The identification of the individual factors contributing to the regulation of different traits sheds new light on the relations among these characters. We also point out that the regulation of our traits is mostly specific to the N environment (N availability). Finally, we describe four interesting loci at which positional cloning is feasible.  相似文献   

17.
Vitamin E refers to eight distinct compounds collectively known as tocochromanols and can be further divided into two classes, tocotrienols and tocopherols. Tocochromanols are the major lipid-soluble antioxidants in maize (Zea mays L.) grain. Enhancing vitamin E content of maize through plant breeding has important implications for human and animal nutrition. Four inbred lines exhibiting unique variation for tocochromanol compounds were chosen from the Goodman maize diversity panel to construct two biparental mapping populations (N6xNC296 and E2558xCo125). The N6xNC296 population was developed to analyze segregation for α-tocopherol and α-tocotrienol content. The E2558WxCo125 population was developed to analyze segregation for the ratio of total tocotrienols to tocopherols. The tocochromanol variation in two replicates of each population was quantified using liquid chromatography-diode array detection. Using high-density linkage mapping, novel quantitative trait loci (QTL) in the N6xNC296 population were mapped using tocopherol ratio traits. These QTL contain the candidate gene homogentisate phytyltransferase (ZmVTE2) within the respective support intervals. This locus was not mapped in a previous genome-wide association study that analyzed tocochromanols in the Goodman diversity panel. Transgressive segregation was observed for γ- and α-tocochromanols in these populations, which facilitated QTL identification. These QTL and transgressive segregant families can be used in selection programs for vitamin E enhancement in maize. This work illustrates the complementary nature of biparental mapping populations and genome-wide association studies to further characterize genetic variation of tocochromanol content in maize grain.  相似文献   

18.
In many legume crops, especially in forage legumes, aerial morphogenesis defined as growth and development of plant organs, is an essential trait as it determines plant and seed biomass as well as forage quality (protein concentration, dry matter digestibility). Medicago truncatula is a model species for legume crops. A set of 29 accessions of M. truncatula was evaluated for aerial morphogenetic traits. A recombinant inbred lines (RILs) mapping population was used for analysing quantitative variation in aerial morphogenetic traits and QTL detection. Genes described to be involved in aerial morphogenetic traits in other species were mapped to analyse co-location between QTLs and genes. A large variation was found for flowering date, morphology and dynamics of branch elongation among the 29 accessions and within the RILs population. Flowering date was negatively correlated to main stem and branch length. QTLs were detected for all traits, and each QTL explained from 5.2 to 59.2% of the phenotypic variation. A QTL explaining a large part of genetic variation for flowering date and branch growth was found on chromosome 7. The other chromosomes were also involved in the variation detected in several traits. Mapping of candidate genes indicates a co-location between a homologue of Constans gene or a flowering locus T (FT) gene and the QTL of flowering date on chromosome 7. Other candidate genes for several QTLs are described. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Zinc (Zn) hyperaccumulation seems to be a constitutive species-level trait in Thlaspi caerulescens. When compared under conditions of equal Zn availability, considerable variation in the degree of hyperaccumulation is observed among accessions originating from different soil types. This variation offers an excellent opportunity for further dissection of the genetics of this trait. A T. caerulescens intraspecific cross was made between a plant from a nonmetallicolous accession [Lellingen (LE)], characterized by relatively high Zn accumulation, and a plant from a calamine accession [La Calamine (LC)], characterized by relatively low Zn accumulation. Zinc accumulation in roots and shoots segregated in the F3 population. This population was used to construct an LE/LC amplified fragment length polymorphism (AFLP)-based genetic linkage map and to map quantitative trait loci (QTL) for Zn accumulation. Two QTL were identified for root Zn accumulation, with the trait-enhancing alleles being derived from each of the parents, and explaining 21.7 and 16.6% of the phenotypic variation observed in the mapping population. Future development of more markers, based on Arabidopsis orthologous genes localized in the QTL regions, will allow fine-mapping and map-based cloning of the genes underlying the QTL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号