首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Replication of singly-DNA primed M13 DNA by DNA polymerase (pol) δ completely relies on the simultaneous addition of proliferating cell nuclear antigen (PCNA), replication factor C (RF-C) and replication protein A (RP-A) (orE.coli singlestrand DNA binding protein, SSB). Pol ? core alone is able to synthesize the products on singly-primed ssDNA. However, DNA synthesis by pol ? was stimulated up to 10-fold upon addition of the three auxiliary proteins PCNA, RF-C and SSB. This stimulation of pol ? by PCNA/RF-C/SSB appears to be the superposition of two events: pol, ? holoenzyme (pol ?, PCNA, RF-C) synthesized longer products than its pol ? core counterpart, but elongated less primers. Furthermore, we analyzed the cooperative action of pol α/primase with pol δ or pol ? holoenzymes on unprimed M13 DNA. While pol δ displayed higher dNMP incorporation than pol ?, when a single primer was preannealed to DNA, pol ? was more efficient in the utilization of the primers synthesized by pol α/primase. Under these conditions both longer products and a higher amount of dNMP incorporation was found for pol ? holoenzyme, than for pol δ. Our data support the hypothesis of pol δ as the leading and pol ? as the second lagging strand replication enzyme.  相似文献   

2.
An important not yet fully understood event in DNA replication is the DNA polymerase (pol) switch from pol alpha to pol delta. Indirect evidence suggested that the clamp loader replication factor C (RF-C) plays an important role, since a replication competent protein complex containing pol alpha, pol delta and RF-C could perform pol switching in the presence of proliferating cell nuclear antigen (PCNA). By using purified pol alpha/primase, pol delta, RF-C, PCNA and RP-A we show that: (i) RF-C can inhibit pol alpha in the presence of ATP prior to PCNA loading, (ii) RF-C decreases the affinity of pol alpha for the 3'OH primer ends, (iii) the inhibition of pol alpha by RF-C is released upon PCNA loading, (iv) ATP hydrolysis is required for PCNA loading and subsequent release of inhibition of pol alpha, (v) under these conditions a switching from pol alpha/primase to pol delta is evident. Thus, RF-C appears to be critical for the pol alpha to pol delta switching. Based on these results, a model is proposed in which RF-C induces the pol switching by sequestering the 3'-OH end from pol alpha and subsequently recruiting PCNA to DNA.  相似文献   

3.
Holmes AM  Haber JE 《Cell》1999,96(3):415-424
Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB.  相似文献   

4.
DNA synthesis by two eukaryotic DNA polymerases, alpha and delta, was studied using a single-strand M13 DNA template primed at a unique site. In the presence of low amounts of either DNA polymerase alpha or delta, DNA synthesis was limited and short DNA strands of approximately 100 bases were produced. Addition of replication factors RF-A, PCNA and RF-C, which were previously shown to be required for SV40 DNA replication in vitro, differentially stimulated the activity of both DNA polymerases. RF-A and RF-C independently stimulated DNA polymerase alpha activity 4- to 6-fold, yielding relatively short DNA strands (less than 1 kb) and PCNA had no effect. In contrast, polymerase delta activity was stimulated co-operatively by PCNA, RF-A and RF-C approximately 25- to 30-fold, yielding relatively long DNA strands (up to 4 kb). Neither RF-C nor RF-A appear to correspond to known polymerase stimulatory factors. RF-A was previously shown to be required for initiation of DNA replication at the SV40 origin. Results presented here suggest that it also functions during elongation. The differential effects of these three replication factors on DNA polymerases alpha and delta is consistent with the model that the polymerases function at the replication fork on the lagging and leading strand templates respectively. We further suggest that co-ordinated synthesis of these strands requires dynamic protein-protein interactions between these replication factors and the two DNA polymerases.  相似文献   

5.
Eukaryotic replication begins at origins and on the lagging strand with RNA-primed DNA synthesis of a few nucleotides by polymerase alpha, which lacks proofreading activity. A polymerase switch then allows chain elongation by proofreading-proficient pol delta and pol epsilon. Pol delta and pol epsilon are essential, but their roles in replication are not yet completely defined . Here, we investigate their roles by using yeast pol alpha with a Leu868Met substitution . L868M pol alpha copies DNA in vitro with normal activity and processivity but with reduced fidelity. In vivo, the pol1-L868M allele confers a mutator phenotype. This mutator phenotype is strongly increased upon inactivation of the 3' exonuclease of pol delta but not that of pol epsilon. Several nonexclusive explanations are considered, including the hypothesis that the 3' exonuclease of pol delta proofreads errors generated by pol alpha during initiation of Okazaki fragments. Given that eukaryotes encode specialized, proofreading-deficient polymerases with even lower fidelity than pol alpha, such intermolecular proofreading could be relevant to several DNA transactions that control genome stability.  相似文献   

6.
Human DNA polymerase delta (pol delta) is required for the synthesis of leading strand of simian virus 40 (SV40) DNA replication in vitro. Pol delta requires the accessory factors, proliferating cell nuclear antigen (PCNA), activator 1 (A1; also known as replication factor C [RF-C]), human single-stranded DNA binding protein (HSSB; also known as replication protein A [RP-A]) for the elongation of primed template DNA. Since pol delta has an associated 3'-5' exonuclease activity, the effect of pol delta accessory factors on the exonuclease activity was examined. The 3'-5' exonuclease activity was stimulated 8-10 fold by the addition of HSSB, and this stimulatory effect was preferential to HSSB since other SSBs from E. coli, T4 or adenovirus, had a little or no effect. The stimulatory effect of HSSB was markedly inhibited by the combined action of A1 and PCNA. Furthermore, the addition of deoxyribonucleoside triphosphates (dNTPs) completely abolished the effect of HSSB on the 3'-5' exonuclease activity even in the absence of pol delta accessory factors. These results suggest that accessory factors and dNTPs regulate both the polymerase and the 3'-5' exonuclease activities.  相似文献   

7.
Replication factors A and C (RF-A and RF-C) and the proliferating cell nuclear antigen (PCNA) differentially augment the activities of DNA polymerases alpha and delta. The mechanism of stimulation by these replication factors was investigated using a limiting concentration of primed, single-stranded template DNA. RF-A stimulated polymerase alpha activity in a concentration-dependent manner, but also suppressed nonspecific initiation of DNA synthesis by both polymerases alpha and delta. The primer recognition complex, RF-C.PCNA.ATP, stimulated pol delta activity in cooperation with RF-A, but also functioned to prevent abnormal initiation of DNA synthesis by polymerase alpha. Reconstitution of DNA replication with purified factors and a plasmid containing the SV40 origin sequences directly demonstrated DNA polymerase alpha dependent synthesis of lagging strands and DNA polymerase delta/PCNA/RF-C dependent synthesis of leading strands. RF-A and the primer recognition complex both affected the relative levels of leading and lagging strands. These results, in addition to results in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1950-1960), suggest that an exchange of DNA polymerase complexes occurs during initiation of bidirectional DNA replication at the SV40 origin.  相似文献   

8.
Polymerase dynamics at the eukaryotic DNA replication fork   总被引:2,自引:0,他引:2  
This review discusses recent insights in the roles of DNA polymerases (Pol) delta and epsilon in eukaryotic DNA replication. A growing body of evidence specifies Pol epsilon as the leading strand DNA polymerase and Pol delta as the lagging strand polymerase during undisturbed DNA replication. New evidence supporting this model comes from the use of polymerase mutants that show an asymmetric mutator phenotype for certain mispairs, allowing an unambiguous strand assignment for these enzymes. On the lagging strand, Pol delta corrects errors made by Pol alpha during Okazaki fragment initiation. During Okazaki fragment maturation, the extent of strand displacement synthesis by Pol delta determines whether maturation proceeds by the short or long flap processing pathway. In the more common short flap pathway, Pol delta coordinates with the flap endonuclease FEN1 to degrade initiator RNA, whereas in the long flap pathway, RNA removal is initiated by the Dna2 nuclease/helicase.  相似文献   

9.
DNA polymerase delta (Pol delta) and DNA polymerase epsilon (Pol epsilon) are both required for efficient replication of the nuclear genome, yet the division of labor between these enzymes has remained unclear for many years. Here we investigate the contribution of Pol delta to replication of the leading and lagging strand templates in Saccharomyces cerevisiae using a mutant Pol delta allele (pol3-L612M) whose error rate is higher for one mismatch (e.g., T x dGTP) than for its complement (A x dCTP). We find that strand-specific mutation rates strongly depend on the orientation of a reporter gene relative to an adjacent replication origin, in a manner implying that >90% of Pol delta replication is performed using the lagging strand template. When combined with recent evidence implicating Pol epsilon in leading strand replication, these data support a model of the replication fork wherein the leading and lagging strand templates are primarily copied by Pol epsilon and Pol delta, respectively.  相似文献   

10.
In most cells, 100-1000 Okazaki fragments are produced for each replicative DNA polymerase present in the cell. For fast-growing cells, this necessitates rapid recycling of DNA polymerase on the lagging strand. Bacteria produce long Okazaki fragments (1-2 kb) and utilize a highly processive DNA polymerase III (pol III), which is held to DNA by a circular sliding clamp. In contrast, Okazaki fragments in eukaryotes are quite short, 100-250 bp, and thus the eukaryotic lagging strand polymerase does not require a high degree of processivity. The lagging strand polymerase in eukaryotes, polymerase delta (pol delta), functions with the proliferating cell nuclear antigen (PCNA) sliding clamp. In this report, Saccharomyces cerevisiae pol delta is examined on model substrates to gain insight into the mechanism of lagging strand replication in eukaryotes. Surprisingly, we find pol delta is highly processive with PCNA, over at least 5 kb, on Replication Protein A (RPA)-coated primed single strand DNA. The high processivity of pol delta observed in this report contrasts with its role in synthesis of short lagging strand fragments, which require it to rapidly dissociate from DNA at the end of each Okazaki fragment. We find that this dilemma is solved by a "collision release" process in which pol delta ejects from PCNA upon extending a DNA template to completion and running into the downstream duplex. The released pol delta transfers to a new primed site, provided the new site contains a PCNA clamp. Additional results indicate that the collision release mechanism is intrinsic to the pol3/pol31 subunits of the pol delta heterotrimer.  相似文献   

11.
The importance of the interdomain connector loop and of the carboxy-terminal domain of Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) for functional interaction with DNA polymerases delta (Poldelta) and epsilon (Pol epsilon) was investigated by site-directed mutagenesis. Two alleles, pol30-79 (IL126,128AA) in the interdomain connector loop and pol30-90 (PK252,253AA) near the carboxy terminus, caused growth defects and elevated sensitivity to DNA-damaging agents. These two mutants also had elevated rates of spontaneous mutations. The mutator phenotype of pol30-90 was due to partially defective mismatch repair in the mutant. In vitro, the mutant PCNAs showed defects in DNA synthesis. Interestingly, the pol30-79 mutant PCNA (pcna-79) was most defective in replication with Poldelta, whereas pcna-90 was defective in replication with Pol epsilon. Protein-protein interaction studies showed that pcna-79 and pcna-90 failed to interact with Pol delta and Pol epsilon, respectively. In addition, pcna-90 was defective in interaction with the FEN-1 endo-exonuclease (RTH1 product). A loss of interaction between pcna-79 and the smallest subunit of Poldelta, the POL32 gene product, implicates this interaction in the observed defect with the polymerase. Neither PCNA mutant showed a defect in the interaction with replication factor C or in loading by this complex. Processivity of DNA synthesis by the mutant holoenzyme containing pcna-79 was unaffected on poly(dA) x oligo(dT) but was dramatically reduced on a natural template with secondary structure. A stem-loop structure with a 20-bp stem formed a virtually complete block for the holoenzyme containing pcna-79 but posed only a minor pause site for wild-type holoenzyme, indicating a function of the POL32 gene product in allowing replication past structural blocks.  相似文献   

12.
The current view of DNA replication in eukaryotes predicts that DNA polymerase alpha (pol alpha)-primase synthesizes the first 10-ribonucleotide-long RNA primer on the leading strand and at the beginning of each Okazaki fragment on the lagging strand. Subsequently, pol alpha elongates such an RNA primer by incorporating about 20 deoxynucleotides. pol alpha displays a low processivity and, because of the lack of an intrinsic or associated 3'--> 5' exonuclease activity, it is more error-prone than other replicative pols. Synthesis of the RNA/DNA primer catalyzed by pol alpha-primase is a critical step in the initiation of DNA synthesis, but little is known about the role of the DNA replication accessory proteins in its regulation. In this paper we provide evidences that the single-stranded DNA-binding protein, replication protein A (RP-A), acts as an auxiliary factor for pol alpha playing a dual role: (i) it stabilizes the pol alpha/primer complex, thus acting as a pol clamp; and (ii) it significantly reduces the misincorporation efficiency by pol alpha. Based on these results, we propose a hypothetical model in which RP-A is involved in the regulation of the early events of DNA synthesis by acting as a "fidelity clamp" for pol alpha.  相似文献   

13.
Eukaryotic DNA polymerase delta and its accessory proteins are essential for SV40 DNA replication in vitro. A multi-subunit protein complex, replication factor C (RF-C), which is composed of subunits with apparent molecular weights of 140,000, 41,000, and 37,000, has primer/template binding and DNA-dependent ATPase activities. UV-cross-linking experiments demonstrated that the Mr = 140,000 subunit recognizes and binds to the primer-template DNA, whereas the Mr = 41,000 polypeptide binds ATP. Assembly of a replication complex at a primer-template junction has been studied in detail with synthetic, hairpin DNAs. Following glutaraldehyde fixation, a gel shift assay demonstrated that RF-C alone forms a weak binding complex with the hairpin DNA. Addition of ATP or its nonhydrolyzable analogue, ATP gamma S, increased specific binding to the DNA. Footprinting experiments revealed that RF-C recognizes the primer-template junction, covering 15 bases of the primer DNA from the 3'-end and 20 bases of the template DNA. Another replication factor, proliferating cell nuclear antigen (PCNA) binds to RF-C and the primer-template DNA forming a primer recognition complex and extends the protected region on the duplex DNA. This RF-C.PCNA complex has significant single-stranded DNA binding activity in addition to binding to a primer-template junction. However, addition of another replication factor, RF-A, completely blocked the nonspecific, single-stranded DNA binding by the RF-C.PCNA complex. RF-A therefore functions as a specificity factor for primer recognition. In the absence of RF-C, DNA polymerase delta (pol delta) and PCNA form a complex at the primer-template junction, protecting exactly the same site as the primer recognition complex. Addition of RF-C to this complex produced a higher order complex which is unstable unless its formation is coupled with translocation of pol delta. These results suggest that the sequential binding of RF-C, PCNA, and pol delta to a primer-template junction might directly account for the initiation of leading strand DNA synthesis at a replication origin. We demonstrate this directly in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1961-1968).  相似文献   

14.
The effect of DNA replication mutations on CAG tract stability in yeast.   总被引:3,自引:0,他引:3  
CAG repeat tracts are unstable in yeast, leading to frequent contractions and infrequent expansions in repeat tract length. To compare CAG repeats to other simple repeats and palindromic sequences, we examined the effect of DNA replication mutations, including alleles of pol alpha, pol delta, pol epsilon, and PCNA (proliferating cell nuclear antigen), on tract stability. Among the polymerase mutations, the pol delta mutation (pol3-14) destabilizes tracts with either CAG or CTG as the lagging strand template. One pol alpha mutation, pol1-1, destabilizes the orientation with CAG as the lagging strand template, but it has little effect on the CTG orientation. In contrast, the pol1-17 mutation has no effect on either orientation. Similarly, mutations in the proofreading functions of pol delta and pol epsilon, as well as a temperature-sensitive pol epsilon mutation, pol2-18, have no effect on tract stability. Three PCNA mutations, pol30-52, pol30-79, and pol30-90, all have drastic effects on tract stability. Of the three, pol30-52 is unique in yielding small tract changes that are indicative of an impairment in mismatch repair. These results show that while CAG repeats are destabilized by many of the same mutations that destabilize other simple repeats, they also have some behaviors that are suggestive of their potential to form hairpin structures.  相似文献   

15.
The contributions of human DNA polymerases (pols) alpha, delta and epsilon during S-phase progression were studied in order to elaborate how these enzymes co-ordinate their functions during nuclear DNA replication. Pol delta was three to four times more intensely UV cross-linked to nascent DNA in late compared with early S phase, whereas the cross-linking of pols alpha and epsilon remained nearly constant throughout the S phase. Consistently, the chromatin-bound fraction of pol delta, unlike pols alpha and epsilon, increased in the late S phase. Moreover, pol delta neutralizing antibodies inhibited replicative DNA synthesis most efficiently in late S-phase nuclei, whereas antibodies against pol epsilon were most potent in early S phase. Ultrastructural localization of the pols by immuno-electron microscopy revealed pol epsilon to localize predominantly to ring-shaped clusters at electron-dense regions of the nucleus, whereas pol delta was mainly dispersed on fibrous structures. Pol alpha and proliferating cell nuclear antigen displayed partial colocalization with pol delta and epsilon, despite the very limited colocalization of the latter two pols. These data are consistent with models where pols delta and epsilon pursue their functions at least partly independently during DNA replication.  相似文献   

16.
Lag times in DNA synthesis by DNA polymerase delta holoenzyme were due to ATP-mediated formation of an initiation complex on the primed DNA by the polymerase with the proliferating cell nuclear antigen (PCNA) and replication factor C (RF-C). Lag time analysis showed that high affinity binding of RF-C to the primer terminus required PCNA and that this complex was recognized by the polymerase. The formation of stable complexes was investigated through their isolation by Bio-Gel A-5m filtration. A stable complex of RF-C and PCNA on primed single-stranded mp18 DNA was isolated when these factors were preincubated with the DNA and with ATP, or, less efficiently with ATP gamma S. These and additional experiments suggest that ATP binding promotes the formation of a labile complex of RF-C with PCNA at the primer terminus, whereas its hydrolysis is required to form a stable complex. Subsequently, DNA polymerase delta binds to either complex in a replication competent fashion without further energy requirement. DNA polymerase epsilon did not associate stably with RF-C and PCNA onto the DNA, but its transient participation with these cofactors into a holoenzyme-like initiation complex was inferred from its kinetic properties and replication product analysis. The kinetics of the elongation phase at 30 degrees, 110 nucleotides/s by DNA polymerase delta holoenzyme and 50 nucleotides/s by DNA polymerase epsilon holoenzyme, are in agreement with in vivo rates of replication fork movement in yeast. A model for the eukaryotic replication fork involving both DNA polymerase delta and epsilon is proposed.  相似文献   

17.
The proliferating cell nuclear antigen (PCNA) is a highly conserved protein required for the assembly of the DNA polymerase delta (pol delta) holoenzyme. Because PCNAs from Saccharomyces cerevisiae and human do not complement each other using in vitro or in vivo assays, hybrids of the two proteins would help identify region(s) involved in the assembly of the pol delta holoenzyme. Two mutants of human PCNA, HU1 (D21E) and HU3 (D120E), and six hybrids of human and S. cerevisiae PCNA, HC1, HC5, CH2, CH3, CH4, and CH5, were prepared by swapping corresponding regions between the two proteins. In solution, all PCNA assembled into trimers, albeit to different extents. These PCNA variants were tested for stimulation of pol delta and in vitro replication of M13 and SV40 DNA as well as to stimulate the ATPase activity of replication factor C (RF-C). Our data suggest that in addition to the interdomain connecting loop and C terminus, an additional site in the N terminus is required for pol delta interaction. PCNA mutants and hybrids that stimulated pol delta and RF-C were deficient in M13 and SV40 DNA replication assays, indicating that PCNA-induced pol delta stimulation and RF-C-mediated loading are not sufficient for coordinated DNA synthesis at a replication fork.  相似文献   

18.
Several amino acids in the active site of family A DNA polymerases contribute to accurate DNA synthesis. For two of these residues, family B DNA polymerases have conserved tyrosine residues in regions II and III that are suggested to have similar functions. Here we replaced each tyrosine with alanine in the catalytic subunits of yeast DNA polymerases alpha, delta, epsilon, and zeta and examined the consequences in vivo. Strains with the tyrosine substitution in the conserved SL/MYPS/N motif in region II in Pol delta or Pol epsilon are inviable. Strains with same substitution in Rev3, the catalytic subunit of Pol zeta, are nearly UV immutable, suggesting severe loss of function. A strain with this substitution in Pol alpha (pol1-Y869A) is viable, but it exhibits slow growth, sensitivity to hydroxyurea, and a spontaneous mutator phenotype for frameshifts and base substitutions. The pol1-Y869A/pol1-Y869A diploid exhibits aberrant growth. Thus, this tyrosine is critical for the function of all four eukaryotic family B DNA polymerases. Strains with a tyrosine substitution in the conserved NS/VxYG motif in region III in Pol alpha, -delta, or -epsilon are viable and a strain with the homologous substitution in Rev3 is UV mutable. The Pol alpha mutant has no obvious phenotype. The Pol epsilon (pol2-Y831A) mutant is slightly sensitive to hydroxyurea and is a semidominant mutator for spontaneous base substitutions and frameshifts. The Pol delta mutant (pol3-Y708A) grows slowly, is sensitive to hydroxyurea and methyl methanesulfonate, and is a strong base substitution and frameshift mutator. The pol3-Y708A/pol3-Y708A diploid grows slowly and aberrantly. Mutation rates in the Pol alpha, -delta, and -epsilon mutant strains are increased in a locus-specific manner by inactivation of PMS1-dependent DNA mismatch repair, suggesting that the mutator effects are due to reduced fidelity of chromosomal DNA replication. This could result directly from relaxed base selectivity of the mutant polymerases due to the amino acid changes in the polymerase active site. In addition, the alanine substitutions may impair catalytic function to allow a different polymerase to compete at the replication fork. This is supported by the observation that the pol3-Y708A mutation is recessive and its mutator effect is partially suppressed by disruption of the REV3 gene.  相似文献   

19.
Overexpression in mammalian cells of the error-prone DNA polymerase beta (Pol beta) has been found to increase the spontaneous mutagenesis. Here, we investigated a possible mechanism used by Pol beta to be a genetic instability enhancer: its interference in replicative DNA synthesis, which is normally catalysed by the DNA polymerases alpha, delta and epsilon. By taking advantage of the ability to incorporate efficiently into DNA the chain terminator ddCTP as well as the oxidised nucleotide 8-oxo-dGTP, we show here that purified Pol beta can compete with the replicative DNA polymerases during replication in vitro of duplex DNA when added to human cell extracts. We found that involvement of Pol beta lowers replication fidelity and results in a modified error-specificity. Furthermore, we demonstrated that involvement of Pol beta occurred during synthesis of the lagging strand. These in vitro data provide one possible explanation of how overexpression of the enzyme could perturb the genetic instability in mammalian cells. We discuss these findings within the scope of the up-regulation of Pol beta in many cancer cells.  相似文献   

20.
The isolation of DNA polymerase (Pol) epsilon from extracts of HeLa cells is described. The final fractions contained two major subunits of 210 and 50 kDa which cosedimented with Pol epsilon activity, similar to those described previously (Syvaoja, J., and Linn, S. (1989) J. Biol. Chem. 264, 2489-2497). The properties of the human Pol epsilon and the yeast Pol epsilon were compared. Both enzymes elongated singly primed single-stranded circular DNA templates. Yeast Pol epsilon required the presence of a DNA binding protein (SSB) whereas human Pol epsilon required the addition of SSB, Activator 1 and proliferating cell nuclear antigen (PCNA) for maximal activity. Both enzymes were totally unable to elongate primed DNA templates in the presence of salt; however, activity could be restored by the addition of Activator 1 and PCNA. Like Pol delta, Pol epsilon formed complexes with SSB-coated primed DNA templates in the presence of Activator 1 and PCNA which could be isolated by filtration through Bio-Gel A-5m columns. Unlike Pol delta, Pol epsilon bound to SSB-coated primed DNA in the absence of the auxiliary factors. In the presence of salt, Pol epsilon complexes were less stable than they were in the absence of salt. In the in vitro simian virus 40 (SV40) T antigen-dependent synthesis of DNA containing the SV40 origin of replication, yeast Pol epsilon but not human Pol epsilon could substitute for yeast or human Pol delta in the generation of long DNA products. However, human Pol epsilon did increase slightly the length of DNA chains formed by the DNA polymerase alpha-primase complex in SV40 DNA synthesis. The bearing of this observation on the requirement for a PCNA-dependent DNA polymerase in the synthesis and maturation of Okazaki fragments is discussed. However, no unique role for human Pol epsilon in the in vitro SV40 DNA replication system was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号