首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Nine Friesian dairy cows were treated with 2.5 micrograms GnRH i.v. at 2-h intervals for 48 h commencing between Days 3 and 8 post partum. Hormone concentrations were measured in jugular venous plasma. An episodic pattern of LH release was induced in all animals and there was no significant change in amplitude during treatment. However, cows treated between Days 7 and 8 ('late') showed higher LH episode peaks than did those treated between Days 3 and 6 ('early'). Plasma FSH concentrations showed a less clear episodic pattern in response to GnRH injection. The mean height of FSH responses to GnRH tended to be higher in the 'early' group than in the 'late' group, as did mean FSH concentrations during the pretreatment sampling period. Although clear episodic changes were not observed, GnRH treatment induced a rapid sustained rise in plasma oestradiol-17 beta concentrations, indicating the responsiveness of ovarian follicles to gonadotrophin stimulation early in the post-partum period. There was no difference in oestradiol-17 beta concentrations between the 'early' and 'late' groups during the treatment period. Only one cow exhibited preovulatory-type LH, FSH and oestradiol-17 beta surges during the 96-h post-treatment sampling period. It is concluded that: (1) responsiveness to GnRH pulses increases significantly and FSH responsiveness tends to decrease with time post partum, (2) ovarian follicles are able to secrete oestradiol-17 beta in response to GnRH-induced LH and FSH release during the early post-partum period and there is no time-dependent change in responsiveness; and (3) the lack of preovulatory surges, except in one cow, may reflect a temporary defect in the positive-feedback mechanism by which high concentrations of oestradiol-17 beta induce preovulatory gonadotrophin release.  相似文献   

2.
The objective of this research was to determine if ergotamine, an ergopeptine alkaloid isolated from Neotyphodium-infected grasses and associated with toxicoses in livestock, altered plasma concentrations of reproductive hormones in follicular phase heifers and in cows given a progestin implant. In Experiment 1, blood was sampled for 8h from four cycling heifers 2 days after synchronized luteolysis. Heifers were treated with ergotamine tartrate (19microg/kg) i.v. or saline vehicle in a simple cross-over design after 1h of pre-treatment blood sampling. Heifers received oxytocin (100USP units) i.v. 4h after ergotamine or saline treatment. Ergotamine reduced (P<0.01) prolactin concentrations from 1 to 4h post-treatment and increased (P<0.01) 13,14-dihydro-15-keto prostaglandin F2alpha (PGFM) concentrations from 2 to 5h post-treatment. A PGFM response to oxytocin was not detected. In Experiment 2, blood was sampled for 8h from six cycling cows 10 days after receiving a s.c. norgestomet implant. Cows were treated i.v. with ergotamine (20microg/kg) or saline in a simple cross-over design after 1h of pre-treatment blood sampling. Cows received gonadorelin (GnRH, 100microg) i.v. 1h after ergotamine or saline. Cows received oxytocin (100USP units) i.v. 4h after ergotamine or saline treatment. Ergotamine reduced (P<0.01) serum prolactin concentrations by 120min after treatment, with prolactin returning to pre-treatment concentrations by 200min after treatment. Saline-treated cows had lower (P<0.01) prolactin by 280min after treatment. Ergotamine-treated cows had higher (P<0.01) PGFM concentrations compared to saline-treated cows 120-240min after treatments, but the groups exhibited similar increases in PGFM after oxytocin. Plasma LH and FSH concentrations increased to peaks 100-120min after GnRH for both groups. However, the LH response to GnRH was greater (P<0.01) for ergotamine-treated cows. In summary, ergotamine lowered prolactin and elevated PGFM concentrations in follicular phase heifers and cows on norgestomet therapy. Ergotamine increased the LH response to exogenous GnRH in cows with norgestomet implants. These data highlight the potential of ergopeptine alkaloids to affect reproduction through altered endocrine function.  相似文献   

3.
Twelve 5-month-old Hereford X Friesian heifers were injected i.v. with 2.0 micrograms GnRH at 2-h intervals for 72 h. Blood samples were collected at 15-min intervals from 24 h before the start until 8 h after the end of the GnRH treatment period. Over the 24-h pretreatment period, mean LH concentrations ranged from 0.4 to 2.2 ng/ml and FSH concentrations from 14.1 to 157.4 ng/ml; LH episodes (2-6 episodes/24 h) were evident in all animals. Each injection of GnRH resulted in a distinct episode-like response in LH, but not FSH. Mean LH, but not FSH, concentrations were significantly increased by GnRH treatment. The GnRH-induced LH episodes were of greater magnitude than naturally-occurring episodes (mean maximum concentration 6.7 +/- 0.5 and 4.9 +/- 0.6 ng/ml respectively). Preovulatory LH surges occurred between 17.0 and 58.8 h after the start of treatment in 9/12 heifers, with a coincident FSH surge in 8 of these animals. This was not followed by normal luteal function. There were no apparent correlations between pretreatment hormone concentrations, and either the pituitary response to GnRH or the occurrence of preovulatory gonadotrophin release.  相似文献   

4.
Plasma LH concentrations were monitored in 6 Hereford X Friesian suckled cows at about 80 days post partum, before and during a 14-day period of continuous s.c. infusion of GnRH (20 micrograms/h). Blood samples were collected at 10-min intervals on Days -2, -1, 1, 2, 3, 4, 7, 10, 13 and 14 (Day 1 = start of infusion). Plasma LH concentrations rose from mean pretreatment levels of 1.3 +/- 0.20 ng/ml to a maximum of 17.1 +/- 3.09 ng/ml within the first 8 h of GnRH infusion, but returned to pretreatment levels by Day 2 or 3. In 4/6 animals, the initial increase was of a magnitude characteristic of the preovulatory LH surge. In all animals, an i.v. injection of 10 micrograms GnRH, given before the start and again on the 14th day of continuous infusion, induced an increase in LH concentrations but the increase to the second injection was significantly (P less than 0.01) less (mean max. conc. 6.4 +/- 0.76 and 2.3 +/- 0.19 ng/ml). Mean LH concentrations (1.0 +/- 0.08, 1.1 +/- 0.08 and 0.9 +/- 0.06 ng/ml) and LH episode frequencies (3.3,4.3 and 3.2 episodes/6 h) did not differ significantly on Days -2,7 and 13. However, the mean amplitude of LH episodes was significantly lower (P less than 0.05) on Day 13 (1.3 +/- 0.10 ng/ml) than on Day -2 (1.8 +/- 0.16 ng/ml). Therefore, although the elevation in plasma LH concentrations that occurs in response to continuous administration of GnRH is short-lived and LH levels return to pre-infusion values within 48 h of the start of infusion, these results show that the pituitary is still capable of responding to exogenous GnRH, although the LH response to an i.v. bolus injection of GnRH is reduced. In addition, this change in pituitary sensitivity is not fully reflected in endogenous patterns of episodic LH secretion.  相似文献   

5.
The response of serum luteinizing hormone (LH) to naloxone, an opiate antagonist, and gonadotropin-releasing hormone (GnRH) was measured in cows in late pregnancy to assess opioid inhibition of LH. Blood samples were collected at 15-min intervals for 7 h. In a Latin Square arrangement, each cow (n = 6) received naloxone (0, 0.5, and 1.0 mg/kg BW, i.v.; 2 cows each) at Hour 2 on 3 consecutive days (9 +/- 2 days prepartum). GnRH (7 ng/kg body weight, i.v.) was administered at Hour 5 to all cows on each day. Mean serum LH concentrations (x +/- SE) before naloxone injection were similar (0.4 +/- 0.1 ng/ml), with no serum LH pulses observed during the experiment. Mean serum LH concentrations post-naloxone were similar (0.4 +/- 0.1 ng/ml) to concentrations pre-naloxone. Mean serum LH concentrations increased (p less than 0.05) following GnRH administration (7 ng/kg) and did not differ among cows receiving different dosages of naloxone (0 mg/kg, 1.44 +/- 0.20; 0.5 mg/kg, 1.0 +/- 0.1; 1.0 mg/kg, 0.9 +/- 0.1 ng/ml). In Experiment 2, LH response to naloxone and GnRH was measured in 12 ovariectomized cows on Day 19 of estrogen and progesterone treatment (5 micrograms/kg BW estrogen: 0.2 mg/kg BW progesterone) and on Days 7 and 14 after steroid treatment. On Day 19, naloxone failed to increase serum LH concentrations (Pre: 0.4 +/- 0.1; Post: 0.4 +/- 0.1 ng/ml) after 0, 0.5, or 1.0 mg/kg BW.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Ewes were sampled during the mid-late luteal phase of the oestrous cycle. Hypophysial portal and jugular venous blood samples were collected at 5-10 min intervals for a minimum of 3 h, before i.v. infusions of saline (12 ml/h; N = 6) or naloxone (40 mg/h; N = 6) for 2 h. During the 2-h saline infusion 2/6 sheep exhibited a GnRH/LH pulse; 3/6 saline infused ewes did not show a pulse during the 6-8-h portal blood sampling period. In contrast, large amplitude GnRH/LH pulses were observed during naloxone treatment in 5/6 ewes. The mean (+/- s.e.m.) amplitude of the LH secretory episodes during the naloxone infusion (1.07 +/- 0.11 ng/ml) was significantly (P less than 0.05) greater than that before the infusion in the same sheep (0.54 +/- 0.15 ng/ml). Naloxone significantly (P less than 0.005) increased the mean GnRH pulse amplitude in the 5/6 responding ewes from a pre-infusion value of 0.99 +/- 0.22 pg/min to 4.39 +/- 1.10 pg/min during infusion. This episodic GnRH secretory rate during naloxone treatment was also significantly (P less than 0.05) greater than in the saline-infused sheep (1.53 +/- 0.28 pg/min). Plasma FSH and prolactin concentrations did not change in response to the opiate antagonist. Perturbation of the endogenous opioid peptide system in the ewe by naloxone therefore increases the secretion of hypothalamic GnRH into the hypophysial portal vasculature. The response is characterized by a large-amplitude GnRH pulse which, in turn, causes a large-amplitude pulse of LH to be released by the pituitary gland.  相似文献   

7.
L V Swanson  S K McCarthy 《Steroids》1986,47(2-3):101-114
A significant dose-response relationship between gonadotropin-releasing hormone (GnRH) and time to luteinizing hormone (LH) peak, peak serum LH and total serum LH was obtained in prepubertal Holstein heifers (28 weeks of age) (Experiment 1). For the second experiment, the effect of steroid feedback on the anterior pituitary was determined. A steady infusion of saline, estradiol-17 beta or progesterone was maintained for 24 h while GnRH, in various schemes, was administered 8 h after the beginning of steroid infusion. Estradiol-17 beta infusion (2.08 micrograms/h), although it did not affect peripheral concentrations of estrogen, caused an LH release 24 to 30 h later in 37.5% of the heifers. This amount of exogenous estrogen did not affect the LH response to a single GnRH (4 micrograms) challenge. When the same GnRH dosage (4 micrograms) was administered 6 times at hourly intervals, the heifers infused with estradiol had a lower response after the first 2 injections of GnRH and a greater response after the last 4 injections than heifers infused with saline. When GnRH was infused (4 micrograms/h) for 6 h, beginning 8 h after steroid infusion, estradiol infusion caused a significantly higher peak LH and total LH release than an infusion of either saline or progesterone (7.3 micrograms/h). The progesterone infusion had no effect on the GnRH-stimulated LH release. We conclude that prepubertal dairy heifers have an anterior pituitary capable of responding to the feedback effect of estrogen in a positive manner.  相似文献   

8.
This experiment determined if the degree of stimulation of the pituitary gland by GnRH affects the suppressive actions of inhibin and testosterone on gonadotropin secretion in rams. Two groups (n = 5) of castrated adult rams underwent hypothalamopituitary disconnection and were given two i.v. injections of vehicle or 0.64 microg/kg of recombinant human inhibin A (rh-inhibin) 6 h apart when treated with i.m. injections of oil and testosterone propionate every 12 h for at least 7 days. Each treatment was administered when the rams were infused i.v. with 125 ng of GnRH every 4 h (i.e., slow-pulse frequency) and 125 ng of GnRH every hour (i.e., fast-pulse frequency). The FSH concentrations and LH pulse amplitude were lower and the LH concentrations higher during the fast GnRH pulse frequency. The GnRH pulse frequency did not influence the ability of rh-inhibin and testosterone to suppress FSH secretion. Testosterone did not affect LH secretion. Following rh-inhibin treatment, LH pulse amplitude decreased at the slow, but not at the fast, GnRH pulse frequency, and LH concentrations decreased at both GnRH pulse frequencies. We conclude that the degree of stimulation of the pituitary by GnRH does not influence the ability of inhibin or testosterone to suppress FSH secretion in rams. Inhibin may be capable of suppressing LH secretion under conditions of low GnRH.  相似文献   

9.
Two experiments were conducted to examine the effects of repeated low-dose injections of gonadotropin releasing hormone (GnRH) 30 to 40 d post partum on reproductive characteristics in multiparous suckled Brahman cross cows. In Experiment I, 39 cows were injected (i.v.) with GnRH (5 mug/injection) at 2-h intervals for either 0 (control), 6, 12, or 24 h at 30 to 37 d post partum. GnRH injections for short periods (6h) increased the number of cows exibiting estrus within 45 d of treatment, but cows injected for 24 h failed to exhibit estrus during this period. The period from treatment to first estrus was shorter in the 6-h GnRH group compared to the control group. Injections for 6h significantly (P < 0.05) increased in serum luteinizing hormone (LH) concentrations 1 d after GnRH treatment. In Experiment II we examined the effect of i.v. GnRH injections (5 mug/injection at 2-h intervals) for 6h in a larger group of cows (n = 70). The days from treatment to first estrus were reduced (P < 0.05) in GnRH-treated cows; however, first-service conception rates were significantly lower (P < 0.01) in treated compared to control cows (46.4 and 80.0%, respectively). The results led us to believe that GnRH injections for short periods reduce postpartum interval to first estrus, but fertility at first estrus is lowered.  相似文献   

10.
Twelve seasonally anoestrous Clun Forest ewes were infused i.v. with either 500 or 1000 ng GnRH/h for 6 h on each of six consecutive days in early or mid-anoestrus. Plasma LH concentrations were elevated during each GnRH infusion but returned to pretreatment levels when infusion ceased. The response to the first infusion was significantly greater (p<0.001) than that to subsequent infusions. In addition, both a GnRH dose and a seasonal influence were evident in the LH response, but these failed to reach statistical significance. Although 7 12 ewes ovulated, only two produced functionally normal corpora lutea.  相似文献   

11.
Père David's deer hinds were treated with GnRH, administered as intermittent i.v. injections (2.0 micrograms/injection at 2-h intervals) for 4 days, or as a continuous s.c. infusion (1.0 micrograms/h) for 14 days. These treatments were given early (February-March) and late (May-June) in the period of seasonal anoestrus. The administration of repeated injections of GnRH increased mean LH concentrations from pretreatment values of 0.54 +/- 0.09 to 2.10 +/- 0.25 ng/ml over the first 8 h of treatment in early anoestrus, and from 0.62 +/- 0.11 to 2.73 +/- 0.49 ng/ml in late anoestrus. The mean amplitude of GnRH-induced LH episodes was greater (P less than 0.01) in late (4.03 +/- 0.28 ng/ml) than in early (3.12 +/- 0.26 ng/ml) anoestrus, but within each replicate (early or late anoestrus), neither mean LH episode amplitude nor mean plasma LH concentrations differed significantly between the four periods of intensive blood sampling. On the basis of their progesterone profiles, 6/12 hinds had ovulated in response to treatment with injections of GnRH (1/6 in early anoestrus and 5/6 in late anoestrus), and oestrus and a preovulatory LH surge were recorded in all of these animals. Oestrus and a preovulatory LH surge were also recorded in one other animal treated in early anoestrus in which progesterone concentrations remained low. The mean times of onset of oestrus (91.0 +/- 1.00 and 62.4 +/- 0.98 h) and of the preovulatory LH surge (85.8 +/- 3.76 and 59.4 +/- 0.25 h) both occurred significantly earlier (P less than 0.001) in animals treated in late anoestrus. Continuous infusion of GnRH to seasonally anoestrous hinds resulted in an increase in mean plasma LH concentrations, but this response did not differ significantly between early (2.15 +/- 0.28 ng/ml) and late (2.48 +/- 0.26 ng/ml) anoestrus. Ovulation, based on progesterone profiles, occurred in 2/7 hinds in early anoestrus and in 4/6 hinds in late anoestrus. Oestrus was detected in all except one of these hinds. The mean time of onset of oestrus occurred earlier in animals treated in late anoestrus (66.2 +/- 0.32 h and 46.7 +/- 0.67 h, P less than 0.01). The administration of GnRH, given either intermittently or continuously, will induce ovulation in a proportion of seasonally anoestrous Père David's deer. However, more animals ovulate in response to this treatment in late than in early anoestrus (75% compared with 23%).  相似文献   

12.
The response of serum luteinizing hormone (LH) to morphine, naloxone and gonadotropin-releasing hormone (GnRH) in ovariectomized, suckled (n=4) and nonsuckled (n=3) cows was investigated. Six months after ovariectomy and calf removal, the cows were challenged with 1mg, i.v. naloxone/kg body weight and 1 mg i.v. morphine/kg body weight in a crossover design; blood was collected at 15-minute intervals for 7 hours over a 3-day period. To evaluate LH secretion and pituitary responsiveness, 5 mug of GnRH were administered at Hour 6 on Day 1. On Days 2 and 3, naloxone or morphine was administered at Hour 3, followed by GnRH (5 mug/animal) at Hour 6. Mean preinjection LH concentrations (3.6 +/- 0.2 and 4.7 +/- 0.2 ng/ml), LH pulse frequency (0.6 +/- 0.1 and 0.8 +/- 0.1 pulses/hour) and LH pulse amplitude (2.9 +/- 0.5 and 2.9 +/- 0.6 ng/ml) were similar for suckled and nonsuckled cows, respectively. Morphine decreased (P < 0.01) mean serum LH concentrations (pretreatment 4.2 +/- 0.2 vs post-treatment 2.2 +/- 0.2 ng/ml) in both suckled and nonsuckled cows; however, mean serum LH concentrations remained unchanged after naloxone. Nonsuckled cows had a greater (P < 0.001) LH response to GnRH than did suckled cows (area of response curve: 1004 +/- 92 vs 434 +/- 75 arbitrary units). We suggest that opioid receptors are functionally linked to the GnRH secretory system in suckled and nonsuckled cows that had been ovariectomized for a long period of time. However, gonadotropin secretion appears not to be regulated by opioid mechanisms, and suckling inhibits pituitary responsiveness to GnRH in this model.  相似文献   

13.
Gümen A  Seguin B 《Theriogenology》2003,60(2):341-348
The objectives of this study evaluating induction of ovulation in early postpartum dairy cows were to: compare two methods of GnRH (100 mcg) administration (i.m. route and s.c. implant), and determine if prostaglandin F(2alpha) (PGF) causes release of LH or ovulation similar to that reported for GnRH. In trial #1, serum LH peaked at 2h after i.m. administration of GnRH and was declining at 4h. The s.c. GnRH implant also caused an elevation in serum LH at 2 and 4h after treatment, with LH declining at 6h. Serum LH was unchanged in control cows. Experimental treatment caused ovulation in 4 of 14 GnRH i.m. treated cows, 4 of 12 GnRH implanted cows and 0 of 13 control cows. Parity had no effect on LH response but did affect resulting ovulation rate as multiparous cows were more likely to ovulate than were primiparous cows in response to either GnRH treatment. All cows that ovulated had a follicle larger than 12 mm at the time of treatment. In trial #2, serum LH increased as before after i.m. administration of GnRH, however, serum LH was unchanged in cows treated with PGF or saline. Gonadotropin releasing hormone caused more cows to ovulate than did PGF or saline treatments, and GnRH shortened the interval from treatment to the onset of CL function over the PGF treatment; 13.9+/-2.6, 28.2+/-4.1 and 22.3+/-4.1 days for GnRH, PGF and saline, respectively. In summary, there was no difference in the ability of s.c. implantation and i.m. administration of GnRH to cause ovulation. Prostaglandin F(2alpha) did not cause release of LH or ovulation. In 22 early postpartum dairy cows treated with 100 mcg GnRH i.m. in these two trials, nearly all cows (95%) responded with a release of LH but only 45% (10/22) responded with an ovulation and subsequent formation of a CL.  相似文献   

14.
The present experiment was designed to determine if and how exogenous ACTH replicates the effects of stressors to delay the preovulatory LH surge in sheep. Twenty-four hours after oestrous synchronisation with prostaglandin in the breeding season, groups of 8-9 intact ewes were injected with 50 microg oestradiol benzoate (0 h) followed 8 h later by 3 injections of saline or GnRH (500 ng each, i.v.) at 2 h intervals (controls). Two further groups received an additional 'late' injection of ACTH (0.8 mg i.m.) 7.5 h after oestradiol, i.e., 0.5 h before the first saline or GnRH challenge. To examine if the duration of prior exposure to ACTH was important, another group of ewes was given ACTH 'early', i.e. 2.5 h before the first GnRH injection. The first GnRH injection produced a maximum LH response of 1.9+/-0.4 ng/ml which was significantly (p < 0.01) enhanced after the second and third GnRH challenge (7.1+/-1.5 ng/ml and 7.0+/-1.7 ng/ml, respectively; 'self-priming'). Late ACTH did not affect the LH response after the first GnRH challenge (1.9+/-0.4 vs. 1.8+/-0.3 ng/ml; p > 0.05) but decreased maximum LH concentrations after the second GnRH to 35% (7.1+/-1.5 vs. 4.6+/-1.1 ng/ml; p = 0.07) and to 40% after the third GnRH (7.0+/-1.7 vs. 4.0+/-0.8 ng/ml; p = 0.05). When ACTH was given early, 4.5 h before the second GnRH, there was no effect on this LH response suggesting that the effect decreases with time after ACTH administration. Concerning the oestradiol-induced LH surge, exogenous GnRH alone delayed the onset time (20.5+/-2.0 vs. 27.8+/-2.1 h; p > 0.05) and reduced the duration of the surge (8.5+/-0.9 vs. 6.7+/-0.6 h; p > 0.05). The onset of the LH surge was observed within 40 h after oestradiol on 29 out of 34 occasions in the saline +/- GnRH treated ewes compared to 11 out of 34 occasions (p < 0.05) when ACTH was also given, either late or early. In those ewes that did not have an LH surge by the end of sampling, plasma progesterone concentrations during the following oestrous cycle increased 2 days later suggesting a delay, not a complete blockade of the LH surge. In conclusion, we have revealed for the first time that ACTH reduces the GnRH self-priming effect in vivo and delays the LH surge, at least partially by direct effects at the pituitary gland.  相似文献   

15.
A specific sheep LH radioimmunoassay was validated for the measurement of goat LH, and used to monitor luteal-phase LH episodes and the preavulatory LH surge in progestagen sponge-synchronized cycling goats. No luteal-phase LH episodes were detected during 12 h of frequent (15-min) blood sampling in 2 goats. A preovulatory LH surge was recorded in 5/5 goats, with a mean amplitude of 45.4 +/- 7.2 ng/ml and a mean time of onset of 38.4 +/- 1.2 h after removal of a progestagen-impregnated sponge. In anoestrous goats, single i.v. injections of 1000 and 2000 ng GnRH induced LH episodes with a mean amplitude of 2.04 +/- 0.11 and 3.67 +/- 0.06 ng/ml respectively, but injections of 250 or 500 ng did not consistently elevate LH concentrations. Progestagen-primed, seasonally anoestrous lactating goats were treated with repeated injections of 1500 ng GnRH (every 2 h for 52 or 78 h) in May 1985 or 1986. All 10 had kidded in March of the same year, and were consequently at peak lactation at the time of GnRH treatment. A preovulatory LH surge was detected in 9 goats with a mean time of onset of 59.5 +/- 2.9 h (1985) or 39.6 +/- 3.3 h (1986) after vaginal sponge removal. All animals displayed oestrus and ovulated, and 9 of the goats were mated: in 5 of these animals pregnancies were successfully carried to term. The results show episodic LH release in response to GnRH and indicate that ovulation can be induced in seasonally anoestrous goats, even at peak lactation, and normal pregnancies may result.  相似文献   

16.
Six cows at different times postpartum (days 1, 7, 14, 21, 28, 35, 42 and 49) were treated with 20 μg gonadotrophin releasing hormone (GnRH) and 1.0 mg oestradiol benzoate. There was a gradual regain of plasma luteinizing hormone (LH) response to GnRH up to day 14 postpartum. No response of LH was achieved after oestradiol benzoate treatment on day 1, and thereafter the response continued to increase until day 21, occurring between 14 and 34 h (24.6 ± 2.6, mean ± SE) after injection. There was a significant negative correlation between the time to peak concentration and day postpartum. Cows which had plasma progesterone concentrations > 0.3 ng/ml did not respond to oestradiol benzoate treatment.Cows challenged in the follicular and luteal phases of established cycles had LH responses to GnRH which were significantly (P < 0.0005) greater than in the postpartum cows, but there was no difference between the responses in the follicular and luteal phases (P > 0.1). In those cows which responded to oestradiol benzoate, the peak LH release was greater than that achieved in the responding postpartum cows (P < 0.05) and the increased LH values occurred 18–30 h (24.7 ± 2.5 h) after injection.A physiological endocrine challenge test has been established to investigate changes in pituitary responses to GnRH and oestradiol benzoate in dairy cows.  相似文献   

17.
Two experiments were performed to examine the effect of estradiol on secretion of luteinizing hormone (LH) and on the number of receptors for gonadotropin-releasing hormone (GnRH) after down regulation of GnRH receptors in ovariectomized ewes. In the first experiment, ovariectomized ewes were administered one of four treatments: Group 1) infusion of GnRH i.v. for 40 h; Group 2) injection of 100 micrograms estradiol i.m.; Group 3) infusion of GnRH i.v. for 16 h followed immediately by an injection of 100 micrograms estradiol i.m.; and Group 4) infusion of GnRH i.v. for 40 h plus injection of 100 micrograms estradiol i.m. after the 16th h of infusion. Ewes in Groups 1, 3 and 4 responded to the infusion of GnRH with an immediate increase in serum concentrations of LH, with maximum values occurring between 2 and 4 h after the start of infusion; serum concentrations of LH then began to decline and were approaching the pretreatment baseline within 16 h. Administration of estradiol resulted in a surge of LH regardless of whether the pituitary had been desensitized by infusion of GnRH or not. In all cases the magnitude of the surge was similar to that induced by the initial infusion of GnRH. In Groups 2 and 3 the surge of LH began at 12.3 +/- 0.1 and 11.9 +/- 0.1 h after administration of estradiol. In contrast, the ewes in Group 4 had a surge of LH beginning 3.7 +/- 0.1 h after administration of estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Forty-two Holstein cows were randomly assigned to three superovulatory treatment groups of 14 cows each. Cows in Group I received follicle stimulating hormone (FSH; 50 mg i.m.); those in Group II received FSH (50. mg i.m.) along with GnRH (250 ug in 2 % carboxymethylcellulose s.c.) on the day of estrus; and cows in Group III were infused FSH (49 mg) via osmotic pump implants. FSH was administered over a 5-d period for cows in Groups I and II (twice daily in declining doses). Cows in Group III received FSH over a 7-d period (constantly at a rate of 7 mg/day). All cows received 25 mg PGF(2)alpha (prostaglandin F(2)alpha) 48 hours after initiation of the FSH treatment. Blood samples were collected from seven cows from each group at 2 hour intervals on the fifth day of superovulation for serum luteinizing hormone (LH) concentration analysis by radioimmunoassay, and blood samples were collected from all cows on the day of embryo recovery for plasma progesterone determination. The LH profile was not altered (P>0.05) by either GnRH administration or by the constant infusion of FSH as compared to FSH treatment alone. Plasma progesterone concentrations were highly correlated with the number of corpora lutea (CL) palpated (r=0.92; P<0.01) and with the number of ova and/or embryos recovered (r=0.88; P<0.01). The accuracy of predicting the number of recoverable ova and/or embryos by the concentration of plasma progesterone was 86%.  相似文献   

19.
Eighteen anestrous crossbred suckled beef cows were assigned to one of three treatment groups. Treatments were as follows: Group 1 cows (n = 3) were untreated and served as controls, Groups 2 cows (n = 6) were intramuscularly administered 250 mug GnRH, and Group 3 cows (n = 9) were subcutaneously administered a progestin ear implant for eight days prior to the administration of 250 mug GnRH. The GnRH was given to cows in Group 3 24 h after the time of progestin implant removal. Cows were 21 to 31 days postpartum at the time of GnRH treatment. The percent of cows that ovulated after the time of GnRH treatment was 0%, 83% and 100% for Groups 1, 2 and 3, respectively. For the cows that ovulated, more (P < 0.05) cows in Group 2 (80%) had abnormal luteal phases than in Group 3 (33%). The GnRH-induced LH release and peak LH concentrations were greater (P < 0.01) in the cows in Group 3 (214.3 +/- 37.1 ng/ml) than in the cows in Group 2 (142.7 +/- 19.0 ng/ml). The LH concentrations of the control cows remained very low throughout the sampling period. Although prostaglandin metabolite (PGFM) concentrations were not significantly (P > 0.10) different among groups, mean concentrations were higher and more variable for cows in Groups 1 (39.2 +/- 5.2 pg/ml) and 2 (39.4 + 6.1 pg/ml) than for cows in Group 3 (25.1 + 1.4 pg/ml).  相似文献   

20.
Forty-one postpartum anestrous Hereford cows, maintained under range conditions, were used to determine the influence of gonadotropin releasing hormone (GnRH) or pregnant mare serum gonadotropin (PMSG) on ovarian function. Anestrous cows were identified by estrous detection with sterile bulls and concentrations of progesterone in plasma obtained weekly. At 45 +/- 2 days postpartum, cows were allotted to the following treatments: (1) control (saline), (2) 100 mug GnRH, (3) 200 mug GnRH, (4) 200 mug GnRH in carboxymethyl cellulose (CMC), (5) 500 IU PMSG, (6) 1,000 IU PMSG or (7) 2,000 IU PMSG. Cows were bled frequently the first day after treatment and then every other day until 85 days postpartum. The LH responses after 100 and 200 mug of GnRH were not significantly different and mixing 200 mug GnRH with CMC before injection did not significantly alter the LH response. During the first 20 days after treatment, neither GnRH nor 500 IU PMSG altered estradiol concentrations in plasma, but treatment of cows with 1,000 or 2,000 IU PMSG resulted in increased (P<0.01) concentrations of estradiol. The time postpartum required for concentrations of progesterone in plasma to exceed 1 ng/ml was reduced (P<0.05) by all treatments except 100 mug GnRH. These data indicate that GnRH causes LH release in anestrous range cows and that treatment with 1,000 or 2,000 IU PMSG initiates ovarian activity as evidenced by increased concentrations of estradiol in plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号