首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several novel allelic groups of tomato (Solanum lycopersicum L.) mutants with impaired photomorphogenesis have been identified after gamma-ray mutagenesis of phyA phyB1 double-mutant seed. Recessive mutants in one allelic group are characterized by retarded hook opening, increased hypocotyl elongation and reduced hypocotyl chlorophyll content under white light (WL). These mutants showed a specific impairment in response to blue light (BL) resulting from lesions in the gene encoding the BL receptor cryptochrome 1 (cry1). Phytochrome A and cry1 are identified as the major photoreceptors mediating BL-induced de-etiolation in tomato, and act under low and high irradiances, respectively. Phytochromes B1 and B2 also contribute to BL sensing, and the relative contribution of each of these four photoreceptors differs according to the light conditions and the specific process examined. Development of the phyA phyB1 phyB2 cry1 quadruple mutant under WL is severely impaired, and seedlings die before flowering. The quadruple mutant is essentially blind to BL, but experiments employing simultaneous irradiation with BL and red light suggest that an additional non-phytochrome photoreceptor may be active under short daily BL exposures. In addition to effects on de-etiolation, cry1 is active in older, WL-grown plants, and influences stem elongation, apical dominance, and the chlorophyll content of leaves and fruit. These results provide the first mutant-based characterization of cry1 in a plant species other than Arabidopsis.  相似文献   

3.
UV-B radiation inhibits hypocotyl elongation in etiolated tomato (Lycopersicon esculentum Mill. cv. Alisa Craig) seedlings acting through a photoreceptor system with peak apparent effectiveness around 300 nm. In order lo further characterize the response and gain insight into its potential ecological significance, the time-course of inhibition was measured and compared with the time-course of flavonoid accumulation in the same seedlings. When a background of strong (> 620 μmol m?2 s?1) white light (WL) was supplemented with low irradiance UV-B (~ 3 μmol m?2 s?1). substantial (~ 50%) inhibition of elongation occurred within 3 h of the light treatment. The magnitude of UV-B-induced elongation inhibition was similar in wild type (WT) and au-mutant seedlings, in spite of the large differences between genotypes in rate and temporal pattern of elongation. In comparison to the effect of UV-B on elongation, induction of flavonoid accumulation in WT and au seedlings undergoing de-etiolation was a much slower response. Several UV-absorbing compounds appeared to be specifically induced by light, and some of them accumulated faster under the WL + UV-B treatment than under WL alone. However, there was little or no delectable effect of WL on flavonoid levels until up to 3 h of treatment, and the specific UV-B effect was measurable only after 6 h of continuous treatment. Indeed. UV-B-screening properties of crude alcoholic extracts were not different between WL and WL + UV-B treatments until after 9 or 24 h. When the light treatments were applied to seedlings that were just breaking through the soil surface. UV-B was found to consistently retard seedling emergence. These results suggest that the rapid inhibition of elongation in de-etiolating seedlings is an evolved response lo UV-B, which may serve to minimize seedling exposure to sunlight until protective pigmentation responses (triggered by WL and UV-B) have taken place in the seedlings epidermis.  相似文献   

4.
作为植物体内的一种光受体,光敏色素在植物的光形态建成过程中意义重大。植物光敏色素及由它介导的信号传导途径是目前细胞生物学、发育生物学和分子生物学研究的热点之一。本文介绍了光敏色素的分子特性、生理功能和信号转导途径等方面的研究进展。  相似文献   

5.
Broad-band UV-B radiation inhibited hypocotyl elongation in etiolated tomato ( Lycopersicon esculentum Mill. cv. Alisa Craig) seedlings. This inhibition could be elicited by < 3 μmol m−2 s−1 of UV-B radiation provided against a background of white light (> 620 μmol m−2 s−1 between 320 and 800 nm), and was similar in wild-type and phytochrome-1-deficient aurea mutant seedlings. These observations suggest that the effect of UV-B radiation is not mediated by phytochrome. An activity spectrum obtained by delivering 1 μmol m−2 s−1 of monochromatic UV radiation against a while light background (63 μmol m−2 s−1 showed maximum effectiveness around 300 nm, which suggests that DNA or aromatic residues in proteins are not the chromophores mediating UV-B induced inhibition of elongation. Chemicals that affect the normal (photo)chemistry of flavins and possibly pterins (KI, NaN, and phenylacetic acid) largely abolished the inhibitor) effect of broad-hand UV-B radiation when applied to the root zone before irradiation. KI was effective at concentrations < 10−4 M , which have been shown in vitro to be effective in quenching the triplet excited stales of flavins but not fluorescence from pterine or singlet states of flavins. Elimination of blue light or reduction of UV-A, two sources of flavin excitation, promoted hypocotyl elongation, but did not affect the inhibition of elongation evened by UV-B. Kl applied after UV-B irradiation had no effect on the inhibition response. Taken together these findings suggest that the chromophore of the photoreceptor system invoked in UV-B perception by tomato seedlings during de-etiolation may be a flavin.  相似文献   

6.
7.
8.
The photo-inhibition of Lycopersicon esculentum Mill, hypocotyl growth induced by UV radiation may be mediated by both phytochrome and UV-absorbing receptors. The inhibition of growth induced by continuous irradiation with high fluence rate UV radiation is similar in the au mutant, which is severely deficient in spectrophoto metrically and immunochemically detectable phytochrome, and in the isogenic wild type. Parallel irradiation with 692 nm light, which is equivalent to UV radiation for the phytochrome system in our experimental conditions, induced at high photon fluence rates a significant increase in hypocotyl growth in the au mutant. The same light treatments inhibited the hypocotyl growth of the wild type. The responses of water-grown seedlings and chlorophyll-free seedlings (streptomycin and norflurazon treated seedlings) were compared. Water-grown and chlorophyll-free seedlings responded similarly to UV radiation. The presence of chlorophyll correlates with a significant increase in hypocotyl growth of au mutants irradiated with 692 nm light. These results support the conclusion that UV-induced inhibition of growth in the au mutant is independent of phytochrome.  相似文献   

9.
Phytochrome chromophore-deficient mutants   总被引:9,自引:1,他引:8  
Phytochrome chromophore-deficient mutants have been used as phytochrome-deficient plants to study many aspects of plant development. However, there are still a number of important questions to be resolved concerning both the targets and the phenotypic consequences of these mutations. Recently, progress has been made in our understanding of the molecular basis of the chromophore deficiency in these mutants. Biochemical assays for the committed steps of chromophore synthesis have been developed and used to demonstrate that the pcd1 and yellow-green-2 mutants of pea and tomato, respectively, are unable to synthesize biliverdin IXα from heme while pcd2 and aurea are deficient in phytochromobilin synthase activity. This review focuses on how this information can be used to help understand the basis of other chromophore-deficient mutants, such as the hy1 and hy2 mutants of Arabidopsis, and discusses how the phenotype of chromophore-deficient mutants is related to lesions in the chromophore biosynthesis pathway.  相似文献   

10.
Depolarization of tomato leaf cells by oligogalacturonide elicitors   总被引:5,自引:0,他引:5  
The electrical potential difference (Em) across the plasma membrane of tomato leaf mesophyll cells consists of a cyanide-sensitive component, presumably produced by an H+-ATPase, and a cyanide-insensitive component. Variation of Em between different batches of tissue is mainly caused by variation in the cyanide-sensitive component. Oligogalacturonide elicitors that induce the synthesis of proteinase inhibitors in tomato seedlings depolarize the Em of tomato leaf mesophyll cells. This depolarization closely resembles that caused by cyanide: they are of similar magnitude and vary in a similar manner with variation in the initial Em of different batches of tissue. Treatments with cyanide and with the elicitors have similar effects on the small depolarization caused by KCl at 10 mol m?3. The results suggest that the elicitors depolarize Em by inhibiting the plasma membrane H+-ATPase, but that the detailed mechanism of inhibition by the elicitors is different from that caused by cyanide.  相似文献   

11.
Seed germination of an aurea mutant of tomato ( Lycopersicon esculentum Mill.) is promoted by continuous irradiation with red, far-red or long-wavelength far-red (758 nm) light as well as by cyclic irradiations (5 min red or 5 min far-red/25 min darkness). Far-red light applied immediately after each red does not change the germination behaviour. Seed germination of the isogenic wild-type, cv. UC-105, is promoted by continuous and cyclic red light while it is inhibited by continuous and cyclic far-red light and by continious 758 nm irradiation. Far-red irradiation reverses almost completely the promoting effect of red light. The promoting effect (in the aurea mutant) and the inhibitory effect (in the wild-type) of continuous far-red light do not show photon fluence rate dependency above 20 nmol m−2 s−1. It is concluded that phytochrome controls tomato seed germination throgh low energy responses in both the wild type and the au mutant. The promoting effect of continuous and cyclic far-red light in the au mutant can be attributed to a greater sensitivity to Pfr.  相似文献   

12.
Abstract. Two size ranges of oligosaccharide elicitors of pectic origin have been investigated for their effects on tomato plants. Both size ranges, with degrees of polymerization of 1–7 and 10–20 respectively, induced the accumulation of proteinase inhibitor (PI) activity in excised plants, and also induced changes in membrane potential of leaf mesophyll cells. The depolarizations were substantial, rapid, and reversible on removal of the elicitors. The effects are discussed in the context of early events in the signal transduction pathway linking oligosaccharides to changes in PI gene expression.  相似文献   

13.
Development of galactomannan-hydrolyzing activity, that is involved in the weakening of the mechanical restraint of the endosperm, was followed at pre-germinative stages in tomato ( Lycopersicon esculentum ) seed. Prior to germination the activity developed exclusively in the endosperm portion just adjacent to the radicle tip. In other parts of the endosperm, the activity developed only after germination occurred. Under the conditions where germination was suppressed (far-red light- or ABA-treatment). no activity was detected in the endosperm at the pre-germinative stages. Under the conditions where the inhibition of germination was alleviated (far-red + red or ABA + GA3), the activity developed prior to germination in the endosperm part in front of the radicle tip. Thus, a clear parallel relationship was observed between germinability of the seed and the pre-germinative development of activity in the part of the endosperm portion adjacent to the radicle tip.  相似文献   

14.
Summary Five nitrate reductase-deficient mutants of tomato were isolated from an M2 population after ethyl-methanesulphonate (EMS) seed treatment by means of selection for chlorate resistance. All mutations were monogenic and recessive and complementation analysis revealed that they were non-allelic. Biochemical and molecular characterization of these mutants showed that four of them are cofactor mutants while one is an apoenzyme mutant.  相似文献   

15.
16.
Light signals have profound morphogenic effects on plant development. Signals perceived by the red/far‐red absorbing phytochrome family of photoreceptors and the blue/green/ UV‐A absorbing cryptochrome photoreceptor converge on a group of pleiotropic gene products defined by the COP/DET loci to control the pattern of development. The signaling pathway, although still undefined, includes several classic signaling molecules, such as G‐proteins, calcium, calmodulin, and cGMP. A separate signaling pathway is involved in the modulation of the phototropic response. Additional mutants have been identified that affect subsets of light signaling responses. This review provides an overview of our current understanding of the light signaling process, in particular recent genetic and biochemical advances.  相似文献   

17.
18.
The inhibitory effects of aminooxyacetic acid (AOA) and cobalt chloride (CoCl2) on brassinosteroid (BR)-induced epinasty in tomato plants ( Lycopersicon esculentum Mill. cv. Heinz 1350) are evaluated. CoCl2 dramatically decreases petiole bending and ethylene production as the concentration increases from 50 to 200 μ M. The content of 1-aminocyclopropane-1-carboxylic acid (ACC) in the petiole, instead of accumulating, is reduced and does not change over the concentration range tested. Inhibition of BR-induced epinasty by AOA results from inhibition of ACC synthesis. There are dramatic reductions in petiole bending, ethylene and ACC production as the concentration of AOA is increased from 50 to 200 μ M. Maximum inhibition occurs when the plants are pretreated with the inhibitors. The degree of inhibition increases as the length of pretreatment increases from 1 to 4 h. The response of BR-treated plants to AOA and CoCl2 is similar to the effect of auxin, indicating the integral relationship between BR and auxin.  相似文献   

19.
This work investigated how calcium regulates the ethylene biosynthesis in the fruits of wild-type tomato (Lycopersicon esculentum L.) and their ethylene receptor never-ripe (Nr) mutants. In Nr tomato, the ethylene perception was blocked. When both materials were treated with calcium, the content of 1-aminocyclopropane-1-carboxylic acid (ACC)/malonyl-ACC and the activity of ACC oxidase (ACO) in tomato fruit discs increased, whereas the production of ethylene, content of malondialdehyde, and membrane permeability decreased. Calcium treatment did not affect the activity of ACC synthase, which is the first committed step in the ethylene biosynthesis pathway. The expression of LeACO1 in mature green fruit was inhibited significantly by calcium treatment in wild-type and Nr tomatoes, but the expression of LeACS2, the key ACC synthase gene in ethylene synthesis during tomato fruit maturing, was not affected. These results revealed that the effect of calcium on ethylene biosynthesis in tomato mature green fruit was independent of ethylene perception. The results also revealed that the targeting step of calcium preventing ethylene production was located at the ACC conversion to ethylene, by means of inhibiting ACC availability for ACO through enhancing cell membrane integrity and by means of preventing LeACO1 gene expression. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 1, pp. 60–67. The text was submitted by the authors in English.  相似文献   

20.
An open-air experiment was performed in Pistoia (Italy) to investigate the possible protective role played by different contents of UV-B absorbing compounds to realistic UV-B supplementation and to study its effect on plant fruit production. A mutant line and its normal counterpart of Lycopersicon esculentum Mill, which differ in the content of UV-B absorbing compounds, were used. Additional UV-B radiation in the field was supplied to simulate a 20% stratospheric ozone depletion. Two groups of plants were grown: ‘control’, where plants received only natural solar UV-B radiation, and ‘UV-B’ treatment, where plants were grown under supplemental UV-B. The results of the experiment showed that the content of UV-B absorbing compounds of treated plants did not differ from that of the control in both lines. This indicates that natural sunlight, in Mediterranean areas, is saturating for synthesis of these compounds also in plants with normal content of UV-B absorbing compounds. Consequently, plants are not able to produce significant additional amounts of them, in response to a realistic UV-B supplementation, in order to protect the plant from additional UV-B radiation. No different responses to the UV-B supplementation were found between the two lines. The most significant UV-B effect was an earlier reddening of fruits in comparison with the ‘control’ accompanied by a reduction in the size of mature fruits. No significant effects of UV-B treatment were observed in biomass accumulation, leaf ontogeny, flowering or productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号