首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A study was made of H(+), Na(+), K(+), Ca(++), and Mg(++) binding and ion-exchange properties of the plasma-mesosome membrane system isolated from Micrococcus lysodeikticus strain NCTC 2665. Titration curves were obtained on membranes prepared according to the method of M. R. J. Salton and further exposed to pH 4 for 4 hr (membranes-H). The dissociation coefficients and binding capacities were obtained by applying the mass law equation and the plot of G. Schatchard to the data. The membranes-H possess four kinds of dissociable groups with pK 4.96, 4.18, 3.60, and 3.09, respectively, and a total binding capacity of 0.65 meq/g (dry weight). Potentiometric titrations of cations in the presence and in the absence of membranes-H show that cations (Na(+), K(+), Ca(++), and Mg(++)) are bound by the dissociated groups of the membrane. The fall in pH value for bivalent cations is greater than that for monovalent cations. Cations of the same valency produce equal diminutions on pH. Furthermore, ion-exchange tests carried out on membranes saturated with Mg(++) or Na(+) and suspended in a medium containing (45)Ca show that the cations are reversibly bound.  相似文献   

2.
1. A sarcolemmal fraction was isolated from hamster hind-leg skeletal muscles by successive treatment with lithium bromide and potassium chloride. The membranous fraction was observed to contain a highly active Ca(2+)-stimulated ATPase (adenosine triphosphatase), a Mg(2+)-stimulated ATPase, and an Na(+)+K(+)-stimulated Mg(2+)-dependent ouabain-sensitive ATPase. 2. The Ca(2+)-stimulated ATPase activity was pH-dependent, the optimum being pH7.6. 3. Optimum activation of this enzyme was obtained with 3-4mm-Ca(2+) when 4mm-ATP was present as a substrate, and was not influenced by Na(+), K(+) or ouabain, whereas 2,4-dinitrophenol, sodium azide, oligomycin, sodium fluoride and ethanedioxybis(ethylamine)tetra-acetate were inhibitory. 4. The Ca(2+)-stimulated ATPase was markedly inhibited by thiol-blocking reagents, and cysteine was able to reverse this inhibition. 5. Various bivalent cations stimulated ATP hydrolysis by the sarcolemmal fraction in the following decreasing order of potency: Mg(2+), Ca(2+), Mn(2+), Co(2+), Sr(2+), Ba(2+), Zn(2+), Cu(2+).  相似文献   

3.
The Na-K ATPase found in sedimentable fractions of intestinal epithelium of rats hydrolyzed cytidine triphosphate nearly as well as ATP (25% to 50%); was active only in presence of divalent cations, with specificity for Mg (100%), Mn (50%) and Ca (10%); showed a plateau of activation when Mg concentrations were in excess of substrate; and was inhibited by a second divalent cation (Zn > Mn > Ca), and by 3 × 10?4 M ouabain (50%). Parallel assays of rat red cell ghosts showed differences in substrate specificity (CTP was not utilized), in activation kinetics (activation peak with Mg) and in greater specificity to Mg (Mn was a weaker activator and Zn was a weaker inhibitor). Stabilities also differed in the two preparations: Na? K ATPase of intestinal epithelium was activated by sucrose extraction and denatured during cytolysis at room temperature, while that of red cell fragments was denatured during sucrose extraction and preserved by hemolysis at room temperature. Other properties of Na? K ATPase studied in the two tissues included activation by monovalent cations (optimum at 160 mM Na, 15 mM K), specificity to monovalent cations, and sensitivity to lipid solvents and to some drugs. The data were discussed in terms of comparative properties of Na? K ATPases of various cells. Residual ATPase activities of intestinal epithelium and red cell ghosts were shown to differ in substrate specificity, inhibition and activation. “Residual ATPase” from intestinal epithelium was a zinc-activated nucleoside polyphosphate phosphohydrolase, while ghosts contained Mg? ATPase. Only the latter enzyme was specific to ATP and Mg, activated by Ca in presence of Mg, and sensitive to inhibition by PCMB and Zn.  相似文献   

4.
Homologous gene recombination is crucial for the repair of DNA. A superfamily of recombinases facilitate a central strand exchange reaction in the repair process. This reaction is initiated by coating single-stranded DNA (ssDNA) with recombinases in the presence of ATP and Mg(2+) co-factors to form helical nucleoprotein filaments with elevated ATPase and strand invasion activities. At the amino acid sequence level, archaeal RadA and Rad51 and eukaryal Rad51 and meiosis-specific DMC1 form a closely related group of recombinases distinct from bacterial RecA. Unlike the extensively studied Escherichia coli RecA (EcRecA), increasing evidences on yeast and human recombinases imply that their optimal activities are dependent on the presence of a monovalent cation, particularly potassium. Here we present the finding that archaeal RadA from Methanococcus voltae (MvRadA) is a stringent potassium-dependent ATPase, and the crystal structure of this protein in complex with the non-hydrolyzable ATP analog adenosine 5'-(beta,gamma-iminotriphosphate), Mg(2+), and K(+) at 2.4 A resolution. Potassium triggered an in situ conformational change in the ssDNA-binding L2 region concerted with incorporation of two potassium ions at the ATPase site in the RadA crystals preformed in K(+)-free medium. Both potassium ions were observed in contact with the gamma-phosphate of the ATP analog, implying a direct role by the monovalent cations in stimulating the ATPase activity. Cross-talk between the ATPase site and the ssDNA-binding L2 region visualized in the MvRadA structure provides an explanation to the co-factor-induced allosteric effect on RecA-like recombinases.  相似文献   

5.
1. An ATPase (adenosine triphosphatase) preparation obtained from pig brain microsomes by treatment with sodium iodide showed four apparently different ouabain-sensitive activities under various conditions. They were (a) ouabain-sensitive Mg(2+)-stimulated ATPase, (b) K(+)-stimulated ATPase, (c) (Na(+),K(+))-stimulated ATPase and (d) Na(+)-stimulated ATPase activities. 2. These activities showed the same substrate specificity, ATP being preferentially hydrolysed and CTP slightly. AMP was not hydrolysed. 3. These activities were inhibited by low concentration of ouabain. The concentration producing 50% inhibition was 0.1mum for ouabain-sensitive Mg(2+)-stimulated ATPase, 0.2mum for K(+)-stimulated ATPase, 0.1mum for (Na(+),K(+))-stimulated ATPase and 0.003mum for Na(+)-stimulated ATPase activity. 4. The ouabain-sensitive ATPase activities were inactivated by N-ethylmaleimide but the insensitive ATPase activity was not. 5. The three ouabain-sensitive ATPase activities were inhibited about 50% by 1mm-Ca(2+), whereas the ouabain-sensitive Mg(2+)-stimulated ATPase activity was activated by the same concentration of Ca(2+). The preparation was treated with ultrasonics at 20kcyc./sec. The 2min. ultrasonic treatment inactivated the ATPase activities by 50%. 7. The temperature coefficient Q(10) was 6.6 for K(+)-stimulated ATPase activity, 3.7 for (Na(+),K(+))-stimulated ATPase and 2.6 for Na(+)-stimulated ATPase. 8. Organic solvents inactivated the ATPase activities, to which treatment the K(+)-stimulated ATPase was the most resistant. 9. The phosphorylation of the enzyme preparation became less dependent on Na(+) with decreasing pH. This Na(+)-independent phosphorylation at low pH was sensitive to K(+) and hydroxylamine as well as the Na(+)-dependent phosphorylation at neutral pH.  相似文献   

6.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate with the concomitant reduction of NAD to NADH. Escherichia coli IMPDH is activated by K(+), Rb(+), NH(+)(4), and Cs(+). K(+) activation is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). This inhibition is competitive versus K(+) at high K(+) concentrations, noncompetitive versus IMP, and competitive versus NAD. Thus monovalent cation activation is linked to the NAD site. K(+) increases the rate constant for the pre-steady-state burst of NADH production, possibly by increasing the affinity of NAD. Three mutant IMPDHs have been identified which increase the value of K(m) for K(+): Asp13Ala, Asp50Ala, and Glu469Ala. In contrast to wild type, both Asp13Ala and Glu469Ala are activated by all cations tested. Thus these mutations eliminate cation selectivity. Both Asp13 and Glu469 appear to interact with the K(+) binding site identified in Chinese hamster IMPDH. Like wild-type IMPDH, K(+) activation of Asp50Ala is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). However, this inhibition is noncompetitive with respect to K(+) and competitive with respect to both IMP and NAD. Asp50 interacts with residues that form a rigid wall in the IMP site; disruption of this wall would be expected to decrease IMP binding, and the defect could propagate to the proposed K(+) site. Alternatively, this mutation could uncover a second monovalent cation binding site.  相似文献   

7.
Isolated cell envelopes of a marine bacterium, M.B.3, have been prepared which possess a nonspecific, cation-activated nucleotidase. The cell envelope comprises approximately 35% (dry weight) of the whole cell and contains protein, 60.2%; lipids, 20.7%; hexose, 3.4%; and ribonucleic acid, 4.6%. No deoxyribonucleic acid could be detected in the preparations. The nucleotidase has an essential requirement for Mg(2+); maximum activation at pH 8.0 occurs at a divalent cation concentration of approximately 80 mm. At a Mg(2+) to adenosine 5'-triphosphate (ATP) ratio of 2:1, the enzyme was further stimulated by monovalent cations Na(+), K(+), NH(4) (+), and Li(+). Maximum activity was found at a monovalent ion concentration of approximately 0.3 m. The envelope preparation liberated inorganic orthophosphate (P(i)) from ATP, adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) at similar rates. Thin-layer and ion-exchange chromatography show that when AMP, ADP, and ATP were utilized as substrate, approximately 1, 2, and 3 moles of P(i), respectively, were produced per mole of adenosine. P(i) was also liberated from the 5'-triphosphates of guanosine, uridine, and cytidine. The enzyme preparation did not attack p-nitrophenyl phosphate, beta-glycerophosphate, or inorganic pyrophosphate. Sulfhydryl inhibitors p-chloromercuribenzoate, N-ethyl maleimide, and iodoacetate had little effect upon the nucleotidase activity. Ca(2+) and ethylenediaminetetraacetic acid caused complete inhibition of the system, whereas ouabain had no effect upon the enzyme activity. The concentrations of Na(+) (0.3 m) and Mg(2+) ions (60 to 80 mm) required for maximum ATP-hydrolyzing activity were similar to those concentrations necessary for maintenance of cell integrity and for the prevention of cell lysis.  相似文献   

8.
The membrane-associated Mg(2+)-activated and Ca(2+)-activated adenosine 5'-triphosphatase (EC 3.6.1.3; ATPase) activities of Escherichia coli were further characterized. The degree of inhibition of membrane-bound Mg(2+)-(Ca(2+))-ATPase by a series of anions (i.e., sodium salts of nitrate, iodide, chloride, and acetate) was found to correlate with the relative chaotropic, or solubilizing, effectiveness of these anions. The enzyme was solubilized from washed membrane ghosts by treatment with 0.04% sodium lauryl sulfate at pH 9.0 and 37 C. Solubilized Mg(2+)-(Ca(2+))-ATPase exhibited an initial increase in activity, followed by fairly rapid inactivation, both ATPase activities being particularly cold-labile. The combined stabilizing effects of lauryl mercaptan (1-dodecanethiol), 0.01 m tris(hydroxymethyl)amino-methane-hydrochloride buffer (pH 9.0), 0.2 mm MgCl(2), and ambient temperature facilitated partial purification of the enzyme, the molecular weight of which was estimated to be approximately 100,000 by the gel filtration technique. In general, the membrane-associated Mg(2+)-(Ca(2+))-ATPase of E. coli resembles both mitochondrial membrane ATPase and the well-characterized membrane ATPases of Bacillus megaterium and Microcococcus lysodeikticus. It is of particular interest that N,N'-dicyclohexylcarbodiimide (DCCD), a known inhibitor of mitochondrial ATPase, of mitochondrial oxidative phosphorylation, and of the membrane-bound Mg(2+)-ATPase of Streptococcus faecalis was found to inhibit both the membrane-bound and the solubilized forms of E. coli Mg(2+)-(Ca(2+))-ATPase. The sensitivity of the membrane-associated Mg(2+)-(Ca(2+))-ATPase of E. coli to both anions and cations, its allotopic behavior, and its susceptibility to inhibition by DCCD favor the idea that this enzyme plays a key, probably polyfunctional, role in such biological activities of the membrane as oxidative phosphorylation and ion transport.  相似文献   

9.
The effects of K+ and Na+ on the Ca2+,Mg2+-ATPase of sarcoplasmic reticulum fragments (SRF) were investigated at 1 mM ATP. There was an alteration of the sensitivity of the ATPase to the monovalent cations during storage of the SRF preparation. The Ca2+, Mg2+-ATPase of freshly prepared SRF was slightly activated by 5-10 mM K+ and Na+. Mg2+-ATPase was inhibited by both the monovalent cations to the same extent, and this response to the ions was independent of the freshness of the preparations. After storage of SRF, however, the Ca2+,Mg2+-ATPase was markedly activated by higher concentrations of K+ and Na+ (0.2-0.3 M). K+ and Na+ reduced the Ca uptake at the steady state in freshly prepared SRF, but did not affect pre-steady state uptake. In the presence of oxalate, the rate of Ca accumulation both in fresh and stored preparations was activated by 0.1-0.2 M K+ and Na+. The Ca2+, mg2+-ATPase with oxalate, so-called "extra ATPase," showed the same response to the ions as did the activity without oxalate during storage.  相似文献   

10.
The kinetics of ATP hydrolysis and cation effects on ATPase activity in plasma membrane from Candida albicans ATCC 10261 yeast cells were investigated. The ATPase showed classical Michaelis-Menten kinetics for the hydrolysis of Mg X ATP, with Km = 4.8 mM Mg X ATP. Na+ and K+ stimulated the ATPase slightly (9% at 20 mM). Divalent cations in combination with ATP gave lower ATPase activity than Mg X ATP (Mg greater than Mn greater than Co greater than Zn greater than Ni greater than Ca). Divalent cations inhibited the Mg X ATPase (Zn greater than Ni greater than Co greater than Ca greater than Mn). Free Mg2+ inhibited Mg X ATPase weakly (20% inhibition at 10 mM). Computed analyses of substrate concentrations showed that free Zn2+ inhibited Zn X ATPase, mixed (Zn2+ + Mg2+) X ATPase, and Mg X ATPase activities. Zn X ATP showed high affinity for ATPase (Km = 1.0 mM Zn X ATP) but lower turnover (52%) relative to Mg X ATP. Inhibition of Mg X ATPase by (free) Zn2+ was noncompetitive, Ki = 90 microM Zn2+. The existence of a divalent cation inhibitory site on the plasma membrane Mg X ATPase is proposed.  相似文献   

11.
ATPase activity of the plasma membrane fraction from primary roots of corn (Zea mays L. WF9 x M14) was activated by Mg(2+) and further stimulated by monovalent cations (K(+) > Rb(+) > Cs(+) > Na(+) > Li(+)). K(+)-stimulated activity required Mg(2+) and was substrate-specific. Maximum ATPase activity in the presence of Mg(2+) and K(+) was at pH 6.5 and 40 C. Calcium and lanthanum (<0.5 mm) were inhibitors of ATPase, but only in the presence of Mg(2+). Oligomycin was not an inhibitor of the plasma membrane ATPase, whereas N,N'-dicyclohexylcarbodiimide was. Activity showed a simple Michaelis-Menten saturation with increasing ATP.Mg. The major effect of K(+) in stimulating ATPase activity was on maximum velocity. The kinetic data of K(+) stimulation were complex, but similar to the kinetics of short term K(+) influx in corn roots. Both K(+)-ATPase and K(+) influx kinetics met all criteria for negative cooperativity. The results provided further support for the concept that cation transport in plants is energized by ATP, and mediated by a cation-ATPase on the plasma membrane.  相似文献   

12.
A Mg(2+)+Na(+)+K(+)-stimulated adenosine triphosphatase (ATPase) preparation was isolated from rat ventral prostate by flotation of microsomal membranes in high-density sucrose solutions. The reaction medium for optimum Na(+)+K(+)-stimulated ATPase activity was found to be: Na(+), 115mm; K(+), 7-10mm; Mg(2+), 3mm; ATP, 3mm; tris buffer, pH7.4 at 38 degrees , 20mm. The average DeltaP(i) (Mg(2+)+Na(+)+K(+) minus Mg(2+)+Na(+)) was 9mumoles/mg. of protein/hr., representing a 30% increase over the Mg(2+)+Na(+)-stimulated ATPase activity. At high concentrations, K(+) was inhibitory to the enzyme activity. Half-maximal inhibition of Na(+)+K(+)-stimulated ATPase activity was elicited by ouabain at 0.1mm. The preparation exhibited phosphatase activity towards ribonucleoside triphosphates other than ATP. However, stimulation of P(i) release by Na(+)+K(+) was observed only with ATP as substrate. The apparent K(m) for ATP for Na(+)+K(+)-stimulated activity was about 0.3x10(-3)m. Ca(2+) inhibited only the Na(+)+K(+)-stimulated ATPase activity. Mg(2+) could be replaced by Ca(2+) but then no Na(+)+K(+) stimulation of ATPase activity was noticed. The addition of testosterone or dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) in vitro at 0.1-10mum under a variety of experimental conditions did not significantly increase the Na(+)+K(+)-stimulated ATPase activity. The enzyme preparations from prostates of orchidectomized rats, however, exhibited a drastic decrease in the specific activity of Na(+)+K(+)-stimulated ATPase; these changes were prevented in the orchidectomized rats by injection of testosterone propionate.  相似文献   

13.
The Escherichia coli uncA gene codes for the alpha-subunit of the F1 sector of the membrane proton ATPase. In this work purified soluble F1 enzymes from three mutant strains ( uncA401 , uncA447 , and uncA453 ) have been compared to F1 from a normal strain in respect to (a) binding of 5'-adenylyl imidodiphosphate (AMPPNP) to native enzyme in both the presence and absence of Mg, (b) high-affinity binding of MgATP to native enzyme, (c) total reloading of MgAMPPNP to nucleotide-depleted F1 preparations, (d, e) ability to hydrolyze MgATP at both high MgATP concentrations (d) (steady-state conditions) and low MgATP concentrations (e) where substrate hydrolysis occurs under nonsteady-state (" unisite ") conditions, and (f) sensitivity of steady-state ATPase activities to inhibitors of normal F1-ATPase activity. uncA mutant F1 showed normal stoichiometry of MgAMPPNP binding to both native (three sites per F1) and nucleotide-depleted preparations (six sites per F1). Native uncA F1 preparations showed lower-than-normal affinity for MgAMPPNP and MgATP at the first site filled. Binding of AMPPNP in the absence of Mg was similar to normal, except that no increase in affinity for AMPPNP was induced by aurovertin. The uncA F1-ATPases had low but real steady-state rates of ATP hydrolysis, which were inhibited by aurovertin but relatively insensitive to inhibition by AMPPNP, efrapeptin, and sodium azide. Non-steady-state ( unisite ) ATP hydrolysis rates catalyzed at low substrate concentrations by uncA F1-ATPases were similar to normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Biological membrane fusion employs divalent cations as protein cofactors or as signaling ligands. For example, Mg2+ is a cofactor for the N-ethylmaleimide-sensitive factor (NSF) ATPase, and the Ca2+ signal from neuronal membrane depolarization is required for synaptotagmin activation. Divalent cations also regulate liposome fusion, but the role of such ion interactions with lipid bilayers in Rab- and soluble NSF attachment protein receptor (SNARE)-dependent biological membrane fusion is less clear. Yeast vacuole fusion requires Mg2+ for Sec18p ATPase activity, and vacuole docking triggers an efflux of luminal Ca2+. We now report distinct reaction conditions where divalent or monovalent ions interchangeably regulate Rab- and SNARE-dependent vacuole fusion. In reactions with 5 mm Mg2+, other free divalent ions are not needed. Reactions containing low Mg2+ concentrations are strongly inhibited by the rapid Ca2+ chelator BAPTA. However, addition of the soluble SNARE Vam7p relieves BAPTA inhibition as effectively as Ca2+ or Mg2+, suggesting that Ca2+ does not perform a unique signaling function. When the need for Mg2+, ATP, and Sec18p for fusion is bypassed through the addition of Vam7p, vacuole fusion does not require any appreciable free divalent cations and can even be stimulated by their chelators. The similarity of these findings to those with liposomes, and the higher ion specificity of the regulation of proteins, suggests a working model in which ion interactions with bilayer lipids permit Rab- and SNARE-dependent membrane fusion.  相似文献   

15.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

16.
Pyridoxal kinase catalyzes the transfer of a phosphate group from ATP to the 5' alcohol of pyridoxine, pyridoxamine, and pyridoxal. In this work, kinetic studies were conducted to examine monovalent cation dependence of human pyridoxal kinase kinetic parameters. The results show that hPLK affinity for ATP and PL is increased manyfold in the presence of K(+) when compared to Na(+); however, the maximal activity of the Na(+) form of the enzyme is more than double the activity in the presence of K(+). Other monovalent cations, Li(+), Cs(+), and Rb(+) do not show significant activity. We have determined the crystal structure of hPLK in the unliganded form, and in complex with MgATP to 2.0 and 2.2 A resolution, respectively. Overall, the two structures show similar open conformation, and likely represent the catalytically idle state. The crystal structure of the MgATP complex also reveals Mg(2+) and Na(+) acting in tandem to anchor the ATP at the active site. Interestingly, the active site of hPLK acts as a sink to bind several molecules of MPD. The features of monovalent and divalent metal cation binding, active site structure, and vitamin B6 specificity are discussed in terms of the kinetic and structural studies, and are compared with those of the sheep and Escherichia coli enzymes.  相似文献   

17.
The mgtC gene of Salmonella enterica serovar Typhimurium encodes a membrane protein of unknown function that is important for full virulence in the mouse. Since mgtC is part of an operon with mgtB which encodes a Mg(2+)-transporting P-type ATPase, MgtC was hypothesized to function in ion transport, possibly in Mg(2+) transport. Consequently, MgtC was expressed in Xenopus laevis oocytes, and its effect on ion transport was evaluated using ion selective electrodes. Oocytes expressing MgtC did not exhibit altered currents or membrane potentials in response to changes in extracellular H(+), Mg(2+), or Ca(2+), thus ruling out a previously postulated function as a Mg(2+)/H(+) antiporter. However, addition of extracellular K(+) markedly hyperpolarized membrane potential instead of the expected depolarization. Addition of ouabain to block the oocyte Na(+),K(+)-ATPase completely prevented hyperpolarization and restored the normal K(+)-induced depolarization response. These results suggested that the Na(+),K(+)-ATPase was constitutively activated in the presence of MgtC resulting in a membrane potential largely dependent on Na(+),K(+)-ATPase. Consistent with the involvement of Na(+),K(+)-ATPase, oocytes expressing MgtC exhibited an increased rate of (86)Rb(+) uptake and had increased intracellular free [K(+)] and decreased free [Na(+)] and ATP. The free concentrations of Mg(2+) and Ca(2+) and cytosolic pH were unchanged, although the total intracellular Ca(2+) content was slightly elevated. These results suggest that the serovar Typhimurium MgtC protein may be involved in regulating membrane potential but does not directly transport Mg(2+) or another ion.  相似文献   

18.
1. The ATPase activity of insect mitochondria has been investigated. A comparison was made to determine the distribution and nature of such activity in other isolated fractions of the house fly, Musca domestica L. 2. The ATPase in insect mitochondria is specific in that orthophosphate can be cleaved only from ATP. The Michaelis-Menten constant K(8) = 2.78 x 10(-3)M and V(max.) = 76 micrograms P min.(-1) mg.(-1) dry weight. 3. Mg(++) and Mn(++) activate this enzymatic reaction in mitochondria, but Ca(++) does not. The extent of activation is 60 per cent with the optimal concentration 6 x 10(-4)M. Experiments with combinations of Mg(++) and Mn(++) show that either ion can replace the other and that the effects are additive, depending solely on the final concentration of the combination. Concentrations of Mg, Mn, or Ca ions higher than 6 x 10(-3)M inhibit the enzyme. 4. Fluoride does not inhibit the ATPase of insect mitochondria, whereas azide and chloromercuribenzoate do. The per cent inhibition depends on the concentration of inhibitor. 5. Finely dispersed mitochondrial particles have much greater ATPase activity than intact mitochondria. The possible relationship of this observation to latent ATPase is considered. 6. A magnesium-activated adenylate kinase is present in these mitochondria. The liberated orthophosphate, derived from ADP, is the result of the activity of adenylate kinase followed by the specific ATPase. 7. ATP can be dephosphorylated by enzymes found in the muscle fibrils, and in a "soluble" fraction, as well as in mitochondria. The fibrillar ATPase is Ca(++)-activated. The "soluble" fraction, however, like the mitochondria, is Mg(++)-activated. The "soluble" ATP dephosphorylation mechanism is distinguished from the mitochondrial ATPase in that it is inhibited by fluoride. 8. The "soluble" fraction also contains a magnesium-activated inorganic pyrophosphatase. Fluoride completely inhibits this enzymatic reaction. 9. The possible mechanism of ATP dephosphorylation in the "soluble" fraction is discussed.  相似文献   

19.
1. Energy-linked and non-energy-linked transhydrogenase activities were assayed in membrane preparations from normal Escherichia coli K 12 and from various mutant strains. 2. The energy-linked transhydrogenase, which uses ATP as energy source, was dependent for activity on the presence of a functional Mg(2+)+Ca(2+)-stimulated adenosine triphosphatase. 3. Neither of the quinones formed by E. coli, namely ubiquinone-8 and menaquinone-8, was required for normal ATP-dependent energy-linked transhydrogenase activity. 4. The energy-linked transhydrogenase was inhibited by piericidin A at a site unrelated to the sites of inhibition of the electron-transport chain by piericidin A.  相似文献   

20.
It has been previously shown that local anesthetics inhibit the total Ca2+, Mg2(+)-ATPase activity of synaptosomal plasma membranes. We have carried out kinetic studies to quantify the effects of these drugs on the different Ca2(+)-dependent and Mg2(+)-dependent ATPase activities of these membranes. As a result we have found that this inhibition is not altered by washing the membranes with EDTA or EGTA. We have also found that the Ca2(+)-dependent ATPase activity is not significantly inhibited in the concentration range of these local anesthetics and under the experimental conditions used in this study. The inhibition of the Mg2(+)-dependent ATPase activities of these membranes was found to be of a noncompetitive type with respect to the substrate ATP-Mg2+, did not significantly shift the Ca2+ dependence of the Ca2+, Mg2(+)-ATPase activity, and occurred in a concentration range of local anesthetics that does not significantly alter the order parameter (fluidity) of these membranes. Modulation of this activity by the changes of the membrane potential that are associated with the adsorption of local anesthetics on the synaptosomal plasma membrane is unlikely, on the basis of the weak effect of membrane potential changes on the Ca2+,Mg2(+)-ATPase activity. It is suggested that the local anesthetics lidocaine and dibucaine inhibit the Ca2+, Mg2(+)-ATPase of the synaptosomal plasma membrane by disruption of the lipid annulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号