首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitor of growth family member 4 (ING4) is one of the ING family genes, serves as a repressor of angiogenesis or tumour growth and suppresses loss of contact inhibition. Oncostatin M (OSM) is a multifunctional cytokine that belongs to the interleukin (IL)‐6 subfamily with several biological activities. However, the role of recombinant adenoviruses co‐expressing ING4 and OSM (Ad‐ING4‐OSM) in anti‐tumour activity of laryngeal cancer has not yet been identified. Recombinant Ad‐ING4‐OSM was used to evaluate their combined effect on enhanced anti‐tumour activity in Hep‐2 cells of laryngeal cancer in vivo. Moreover, in vitro function assays of co‐expression of Ad‐ING4‐OSM were performed to explore impact of co‐expression of Ad‐ING4‐OSM on biological phenotype of laryngeal cancer cell line, that is Hep‐2 cells. In vitro, Ad‐ING4‐OSM significantly inhibited the growth, enhanced apoptosis, altered cell cycle with G1 and G2/M phase arrest, and upregulated the expression of P21, P27, P53 and downregulated survivin in laryngeal cancer Hep‐2 cells. Furthermore, in vivo functional experiments of co‐expressing of Ad‐ING4‐OSM demonstrated that solid tumours in the nude mouse model were significantly suppressed, and the co‐expressing Ad‐ING4‐OSM showed a significant upregulation expression of P21, P53, Bax and Caspase‐3 and a downregulation of Cox‐2, Bcl‐2 and CD34. This study for the first time demonstrated the clinical value and the role of co‐expressing Ad‐ING4‐OSM in biological function of laryngeal cancer. This work suggested that co‐expressing Ad‐ING4‐OSM might serve as a potential therapeutic target for laryngeal cancer patients.  相似文献   

2.
研究ING4 (肿瘤生长抑制因子4) 和IL-24 (人白细胞介素24) 双基因共表达腺病毒载体 (Ad-ING4-IL-24) 对肺腺癌的化疗增敏效应及分子机制。将Ad-ING4-IL-24感染A549肺癌细胞及联合顺铂 (DDP) 化疗药物作用,RT-PCR和Western blotting检测ING4和IL-24基因在A549肺癌细胞中的转录和表达,MTT法、流式细胞仪 (FCM) 和 Hoechst 染色法检测Ad-ING4-IL-24联合DDP (联合组) 对A549肺癌细胞的生长抑制和凋亡效应。采用A549细胞株建立人肺腺癌裸鼠模型,然后瘤体局部注射干预用药,动态测量肿瘤体积,并计算瘤重抑瘤率,免疫组化检测ING4、IL-24、bax、bcl-2、VEGF等基因的表达。结果表明,Ad-ING4-IL-24感染A549肺癌细胞后可获得成功转录和表达,体外联合组能明显抑制A549肺癌细胞生长和诱导细胞凋亡,呈现出典型细胞凋亡形态学变化。体内联合组同样能显著抑制肿瘤生长,瘤重抑瘤率达52.81%,免疫组化结果显示联合组能上调bax基因表达,同时下调bcl-2、VEGF等基因的表达。以上结果表明Ad-ING4-IL-24具有化疗增敏的作用,该作用机制可能与促进肿瘤细胞凋亡和抑制血管形成有关。  相似文献   

3.

Introduction

Despite recent improvements in the survival rates for nasopharyngeal carcinoma (NPC), novel treatment strategies are required to improve distant metastasis-free survival. The sodium iodine symporter (NIS) gene has been applied for in vivo imaging and cancer therapy. In this study, we examined the potential of NIS gene therapy as a therapeutic approach in NPC by performing non-invasive imaging using 125I and 131I therapy in vivo.

Methods

We constructed a lentiviral vector expressing NIS and enhanced green fluorescent protein (EGFP) under the control of the human elongation factor-1α (EF1α) promoter, and stably transfected the vector into CNE-2Z NPC cells to create CNE-2Z-NIS cells. CNE-2Z and CNE-2Z-NIS tumor xenografts were established in nude mice; 125I uptake, accumulation and efflux were measured using micro-SPECT/CT imaging; the therapeutic effects of treatment with 131I were assessed over 25 days by measuring tumor volume and immunohistochemical staining of the excised tumors.

Results

qPCR, immunofluorescence and Western blotting confirmed that CNE-2Z-NIS cells expressed high levels of NIS mRNA and protein. CNE-2Z-NIS cells and xenografts took up and accumulated significantly more 125I than CNE-2Z cells and xenografts. In vitro, 131I significantly reduced the clonogenic survival of CNE-2Z-NIS cells. In vivo, 131I effectively inhibited the growth of CNE-2Z-NIS xenografts. At the end of 131I therapy, CNE-2Z-NIS xenograft tumor cells expressed higher levels of NIS and caspase-3 and lower levels of Ki-67.

Conclusion

Lentiviruses effectively delivered and mediated long-lasting expression of NIS in CNE-2Z cells which enabled uptake and accumulation of radioisotopes and provided a significant therapeutic effect in an in vivo model of NPC. NIS-mediated radioiodine treatment merits further investigation as a potentially effective, low toxicity therapeutic strategy for NPC.  相似文献   

4.
目的:构建抑瘤素M(OSM)重组腺病毒载体,研究其对人黑色素瘤细胞A375的抑制作用。方法:以PEGZ-OSM重组质粒为模板,通过PCR技术扩增出OSM片段,采用腺病毒载体的基因重组和体外包装技术获得表达与人OSM氨基酸序列相同的重组腺病毒子Ad-OSM,感染A375细胞,用荧光显微镜、RT-PCR、Western blot法检测OSM在A375细胞中的转录和表达;荧光显微镜观察A375细胞的形态学改变;MTT法和流式细胞术(FCM)检测Ad-OSM对A375细胞的生长抑制和细胞周期的抑制效应;半定量RT-PCR法检测OSM基因表达对A375细胞中的Bax、Bcl-2基因表达的影响。结果:基因测序和PCR分析结果显示,成功构建了Ad-OSM腺病毒表达载体;RT-PCR和Western blot法检测到OSM基因在A375细胞中的转录和表达;OSM基因的表达对A375细胞增殖有明显抑制作用,并可诱导细胞凋亡,OSM基因可通过上调细胞中Bax和下调Bcl-2基因表达诱导细胞凋亡。结论:成功构建了Ad-OSM腺病毒表达载体,感染OSM基因可明显抑制A375人黑色素瘤细胞的生长,诱导其凋亡,该现象可能是通过改变Bax、Bcl-2基因表达水平来发挥抗肿瘤作用。  相似文献   

5.

Background

Regulation of human airway smooth muscle cells (HASMC) by cytokines contributes to chemotactic factor levels and thus to inflammatory cell accumulation in lung diseases. Cytokines such as the gp130 family member Oncostatin M (OSM) can act synergistically with Th2 cytokines (IL-4 and IL-13) to modulate lung cells, however whether IL-17A responses by HASMC can be altered is not known.

Objective

To determine the effects of recombinant OSM, or other gp130 cytokines (LIF, IL-31, and IL-6) in regulating HASMC responses to IL-17A, assessing MCP-1/CCL2 and IL-6 expression and cell signaling pathways.

Methods

Cell responses of primary HASMC cultures were measured by the assessment of protein levels in supernatants (ELISA) and mRNA levels (qRT-PCR) in cell extracts. Activation of STAT, MAPK (p38) and Akt pathways were measured by immunoblot. Pharmacological agents were used to assess the effects of inhibition of these pathways.

Results

OSM but not LIF, IL-31 or IL-6 could induce detectable responses in HASMC, elevating MCP-1/CCL2, IL-6 levels and activation of STAT-1, 3, 5, p38 and Akt cell signaling pathways. OSM induced synergistic action with IL-17A enhancing MCP-1/CCL-2 and IL-6 mRNA and protein expression, but not eotaxin-1 expression, while OSM in combination with IL-4 or IL-13 synergistically induced eotaxin-1 and MCP-1/CCL2. OSM elevated steady state mRNA levels of IL-4Rα, OSMRβ and gp130, but not IL-17RA or IL-17RC. Pharmacologic inhibition of STAT3 activation using Stattic down-regulated OSM, OSM/IL-4 or OSM/IL-13, and OSM/IL-17A synergistic responses of MCP-1/CCL-2 induction, whereas, inhibitors of Akt and p38 MAPK resulted in less reduction in MCP-1/CCL2 levels. IL-6 expression was more sensitive to inhibition of p38 (using SB203580) and was affected by Stattic in response to IL-17A/OSM stimulation.

Conclusions

Oncostatin M can regulate HASMC responses alone or in synergy with IL-17A. OSM/IL-17A combinations enhance MCP-1/CCL2 and IL-6 but not eotaxin-1. Thus, OSM through STAT3 activation of HASMC may participate in inflammatory cell recruitment in inflammatory airway disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0164-4) contains supplementary material, which is available to authorized users.  相似文献   

6.
To increase electrochemotherapy (ECT) applicability, the effectiveness of new drugs is being tested in combination with electroporation. Among them two ruthenium(III) compounds, (imH)[trans-RuCl4(im)(DMSO-S)] (NAMI-A) and Na[trans-RuCl4(ind)2] (KP1339), proved to possess increased antitumor effectiveness when combined with electroporation. The objective of our experimental work was to determine influence of electroporation on the cytotoxic and antitumor effect of a ruthenium(III) compound with hampered transmembrane transport, (imH)[trans-RuCl4(im)2] (KP418) in vitro and in vivo and to determine changes in metastatic potential of cells after ECT with KP418 in vitro. In addition, platinum compound cisplatin (CDDP) and ruthenium(III) compound NAMI-A were included in the experiments as reference compounds. Our results show that electroporation leads to increased cellular accumulation and cytotoxicity of KP418 in murine melanoma cell lines with low and high metastatic potential, B16-F1 and B16-F10, but not in murine fibrosarcoma cell line SA-1 in vitro which is probably due to variable effectiveness of ECT in different cell lines and tumors. Electroporation does not potentiate the cytotoxicity of KP418 as prominently as the cytotoxicity of CDDP. We also showed that the metastatic potential of cells which survived ECT with KP418 or NAMI-A does not change in vitro: resistance to detachment, invasiveness, and re-adhesion of cells after ECT is not affected. Experiments in murine tumor models B16-F1 and SA-1 showed that ECT with KP418 does not have any antitumor effect while ECT with CDDP induces significant dose-dependent tumor growth delay in the two tumor models used in vivo.  相似文献   

7.
8.
The aim is to study the anticancer effect of CXCR4 gene knockdown by CXCR4-siRNA in nude mice model of ovarian cancer. Injecti the SW626 tumor cells which had been transfected by vectors to make nude mouse model of ovarian cancer. The model mice were divided into interference group, negative control group, and blank control group. When the level of target genes were knocked down, the tumor volume was monitored and the tumor quality was measured; the expression of CXCR4 gene in the xenograft tumor was detected by RT-PCR, Western blot, and immunohistochemical staining. Nude mice model with implanted tumor were built successfully, after observing for 20 days. While the CXCR4 was knocked down, the abilities of invasion were weakened; the tumor volume and the tumor quality were also decreased. The CXCR4 mRNA and protein of the interference group decreased significantly (P < 0.05). The animal experiment was confirmed that silencing of CXCR4 gene by siRNA can obviously inhibit the tumorigenesis of ovarian cancer. Our work will provide the theoretical basis for genes interference therapy of ovarian cancer in future.  相似文献   

9.
10.
Hepatocellular carcinoma (HCC) is a malignant tumor characterized by easy metastasis and frequent recurrence. Transarterial chemoembolization (TACE) remains the routine treatment for patients with HCC who are not eligible for surgical resection or percutaneous tumor ablation; however, 5-year survival rates following interventional therapy are only 17–38.8 %, with liver recurrence due to incomplete embolization and tumor angiogenesis being a significant reason for treatment failure. Ischemia and hypoxia induced by TACE is correlated with an increased expression of angiogenic factor and stimulates an increase in angiogenesis, including endothelial cells (ECs) proliferation. Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic endopeptidases involved in tumor angiogenesis. In addition, MMPs stimulate tumor cell growth, migration and invasion, and metastasis. Hypoxia enhanced EC migration in a MMP-2-dependent manner while MMP inhibitors (MMPIs) significantly decreased the number of migrating cells in hypoxic cultures. We hypothesize batimastat (synthetic MMPI) nanoparticles associated with TACE could decrease HCC recurrence and metastasis. At first, batimastat nanoparticles were made from batimastat and poly(lactic-co-glycolic acid). Then, nanoparticles were mixed with lipiodol and chemotherapeutic drugs solution. The mixture was infused super-selectively into supplied artery of HCC through catheter. The disseminated area of batimastat might be same with TACE-induced hypoxia area. In the hypoxia area, batimastat inhibited the activity of MMPs, weakened the angiogenesis of tumor vascular system and migration of HCC cells. HCC cells could not escape from hypoxia area and tumor angiogenesis inhibited could not supply sufficient nutrients and O2 to residual HCC cells. With the help of batimastat, the killing effect of chemotherapeutic drugs might be enhanced. The rate of complete necrosis of HCC lesion might be increased and local recurrence and metastasis of HCC might be reduced. The hypothesis might increase the clinical efficacy of TACE and improve the prognosis of HCC patients.  相似文献   

11.
12.

Objective

Oncostatin M (OSM) is produced by activated T cells, monocytes, and dendritic cells and signals through two distinct receptor complexes consisting of gp130 and LIFR (I) or OSMR-β and gp130 (II), respectively. Aim of this study was to analyze the role of OSM in intestinal epithelial cells (IEC) and intestinal inflammation.

Methods

OSM expression and OSM receptor distribution was analyzed by PCR and immunohistochemistry experiments, signal transduction by immunoblotting. Gene expression studies were performed by microarray analysis and RT-PCR. Apoptosis was measured by caspases-3/7 activity. IEC migration and proliferation was studied in wounding and water soluble tetrazolium assays.

Results

The IEC lines Caco-2, DLD-1, SW480, HCT116 and HT-29 express mRNA for the OSM receptor subunits gp130 and OSMR-β, while only HCT116, HT-29 and DLD-1 cells express LIFR mRNA. OSM binding to its receptor complex activates STAT1, STAT3, ERK-1/2, SAPK/JNK-1/2, and Akt. Microarray analysis revealed 79 genes that were significantly up-regulated (adj.-p≤0.05) by OSM in IEC. Most up-regulated genes belong to the functional categories “immunity and defense” (p = 2.1×10−7), “apoptosis” (p = 3.7×10−4) and “JAK/STAT cascade” (p = 3.4×10−6). Members of the SERPIN gene family were among the most strongly up-regulated genes. OSM significantly increased STAT3- and MEK1-dependent IEC cell proliferation (p<0.05) and wound healing (p = 3.9×10−5). OSM protein expression was increased in colonic biopsies of patients with active inflammatory bowel disease (IBD).

Conclusions

OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro. Considering the increased OSM expression in colonic biopsy specimens of patients with active IBD, OSM upregulation may modulate a barrier-protective host response in intestinal inflammation. Further in vivo studies are warranted to elucidate the exact role of OSM in intestinal inflammation and the potential of OSM as a drug target in IBD.  相似文献   

13.

Objective

The specific degradation of type II collagen and aggrecan by matrix metalloproteinase (MMP)-9, -13 and ADAMTS-4 and -5 (aggrecanase-1 and -2) in the cartilage matrix is a critical step in pathology of osteoarthritis (OA). The aims of this study were: i) To investigate the relative contribution of ADAMTS-4 and ADAMTS-5 to cartilage degradation upon catabolic stimulation; ii) To investigate the effect of regulating the activities of key enzymes by mean of broad-spectrum inhibitors.

Methods

Bovine full-depth cartilage explants stimulated with tumor necrosis factor alpha (TNF-α) and Oncostatin M (OSM) were cultured for 21 days with or without a number of inhibitors targeting different types of proteases. Monoclonal antibodies were raised against the active sites of ADAMTS-4, -5, MMP-9 and -13, and 4 ELISAs were developed and technically validated. In addition, the established AGNxI (ADAMTS-degraded aggrecan), AGNxII (MMP-degraded aggrecan), and CTX-II (MMP-derived type II collagen) were quantified in the explants-conditioned media.

Results

We found that: i) Active ADAMTS-4, MMP-9, -13 were released in the late stage of TNF-α/ OSM stimulation, whereas no significant active ADAMTS-5 was detected in either extracts or supernatants; ii) Active ADAMTS-4 was primarily responsible for E373-374A bond cleavage in aggrecan in this setting; and iii) The compensatory mechanism could be triggered following the blockage of the enzyme caused by inhibitors.

Conclusions

ADAMTS-4 appeared to be the major protease for the generation of 374ARGS aggrecan fragment in the TNF-α/OSM stimulated bovine cartilage explants. This study addresses the need to determine the roles of ADAMTS-4 and ADAMTS-5 in human articular degradation in OA and hence identify the attractive target for slowing down human cartilage breakdown.  相似文献   

14.
15.
Overexpression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis and metastasis in tumors. VEGF/bFGF complex peptide (VBP3) was designed to elicit the body to produce both high titer anti-VEGF and anti-bFGF antibodies to inhibit tumor angiogenesis and tumor growth. BALB/c mice were immunized with the VEGF/bFGF complex peptide, and the immune responses were assayed. Splenocytes were separated from the immunized mice and the CD4, CD8 T cells and IFN-γ were assayed by Flow cytometry. The results showed that the VBP3 could effectively stimulate immune response in mice and resulted in the increase of CD4 and CD8 T cells. CD4+ T cells and CD8+ T cells were increased from 10.78 to 15.13 and 6.82 to 11.58 % respectively. Polyclonal antibodies purified from the VBP3 immunized mice showed good anti-proliferation function to lung cancer cells, and resulted in the decrease of phosphroylation level of Akt and Erk assayed by the Western-blot. Transwell assays showed that the migration of HUVEC cells was inhibited by the antibodies. The results revealed that the VBP3 have good immunogenicity and may be used as a vaccine for tumor therapy.  相似文献   

16.
Head and neck cancer (HNC), one of the most common cancers worldwide, frequently involves mutation of the TP53 gene and dysregulation of the p53 pathway. Overexpression of MDM2 or MDM4 inactivates the tumor-suppressive function of p53. Restoration of p53 function that counteracts these p53 repressors can lead to in vivo tumor regression. Therefore, the present study assessed the ability of the small molecule p53 activator XI-011 (NSC146109) to induce apoptosis in HNC by restoring p53 function. We tested the effects of XI-011 treatment in HNC cell lines, either individually or in combination with cisplatin and assessed growth suppression, cell cycle arrest, and apoptosis. The drug effects on in vivo growth of HNC cells were examined in mice xenograft model. XI-011 exerted the highest growth suppression in tumor cells that overexpress MDM4, in which p53 is degraded. XI-011 treatment downregulated MDM4 mRNA and protein levels, and upregulated expression of proapoptotic genes and promoted apoptosis, in a dose-dependent manner. The apoptotic response was blocked by inhibition of p53 or expression of MDM4, demonstrating that the effects of XI-011 depend on p53 and MDM4. In combination treatments, XI-011 acted synergistically with cisplatin to inhibit growth of HNC cells in vitro and in vivo. MDM4 inhibition and functional restoration of p53 by XI-011 effectively enhanced cisplatin-induced cytotoxicity in HNC cells, an activity that suggests a promising strategy for treating HNC.  相似文献   

17.
Hypoxic niches help maintain mesenchymal stromal cell properties, and their amplification under hypoxia sustains their immature state. However, how MSCs maintain their genomic integrity in this context remains elusive, since hypoxia may prevent proper DNA repair by downregulating expression of BRCA1 and RAD51. Here, we find that the ING1b tumor suppressor accumulates in adipose-derived stromal cells (ADSCs) upon genotoxic stress, owing to SUMOylation on K193 that is mediated by the E3 small ubiquitin-like modifier (SUMO) ligase protein inhibitor of activated STAT protein γ (PIAS4). We demonstrate that ING1b finely regulates the hypoxic response by triggering HIF1α proteasomal degradation. On the contrary, when mutated on its SUMOylation site, ING1b failed to efficiently decrease HIF1α levels. Consistently, we observed that the adipocyte differentiation, generally described to be downregulated by hypoxia, was highly dependent on ING1b expression, during the early days of this process. Accordingly, contrary to what was observed with HIF1α, the absence of ING1b impeded the adipogenic induction under hypoxic conditions. These data indicate that ING1b contributes to adipogenic induction in adipose-derived stromal cells, and thus hinders the phenotype maintenance of ADSCs.Human mesenchymal stem/stromal cells (MSCs) are able to self-renew and differentiate into various cell types. Recently, MSCs have been developed as tools for tissue engineering and cell-based therapies1 in particular owing to their trophic and immunosuppressive activities.2 Conventionally, the bone marrow MSCs (BM-MSCs) and the adipose-derived stem/stromal cells (ADSCs) have constituted the main sources of MSCs for clinical use. These cells are expanded in vitro prior to their application; however, this long-term culture may allow the emergence of senescence and phenotypic alterations, rendering MSCs unsuitable for clinical purposes.3To overcome these issues, MSC culture in conditions mimicking hypoxic niches has been tested.4 Low O2 tensions promote MSC growth, survival and maintain their self-renewing multipotent state.5 However, how hypoxia (1% O2) affects MSC behavior is unclear. Responses to hypoxia are mainly mediated by hypoxia inducible factors (HIFs). HIF1, 2 and 3α subunits, are constitutively degraded in normoxia and stabilized in hypoxia. Consequently, when stabilized they can dimerize with HIF1β, and then translocate into the nucleus to modulate the expression of selected genes. HIF1α is highly expressed in MSCs, controls their metabolic fate and maintains them in an undifferentiated state.6 HIF1α has also been shown to delay the occurrence of senescence in MSCs, by repressing E2A and p21 expression.7The inhibitors of growth (ING) family genes act as readers of the epigenetic histone code. Among them, ING1 has been described as a type II tumor suppressor, regulating cell growth, DNA repair, apoptosis, chromatin remodeling and senescence.8 To some extent, ING1 and HIF might have opposite effects, (e.g. on tumor progression). Indeed, HIF1α, unlike ING1 that inhibits angiogenesis, promotes angiogenesis.9 Furthermore, p53, a well-known ING1b interactor, and HIF1α have been shown in several studies to have antagonistic effects. Following DNA damage, p53 induces apoptosis and inhibits survival of cells by reducing activity and levels of HIF1α.10, 11So far, ING4 has been shown as the only ING protein to regulate the hypoxic response. Indeed, by interacting with HIF prolyl hydroxylase 2 (HPH-2), ING4 has been described to repress some HIF1α activities under hypoxic conditions.12 Here, we show that ING1b accumulates in ADSCs following DNA damage in hypoxia. According to the opposing roles of ING1b and HIF1α, we hypothesized that ING1b could interfere with HIF1α and participate in the conservation of the genomic integrity of MSCs. Mechanistically, we found that ING1b interacted with HIF1α and promoted its proteasomal degradation in hypoxia. SUMOylation of ING1b played a role since the unSUMOylated form of ING1b was unable to trigger HIF1α degradation. The E3 small ubiquitin-like modifier (SUMO) ligase protein inhibitor of activated STAT protein γ (PIAS4) participated in HIF1α degradation and ING1b accumulation following a genotoxic stress in 1% O2. ING1b, subsequently, took part in decreasing PIAS4 levels after DNA damage. Finally, we report that ING1b by decreasing HIF1α level modulated ADSC differentiation potential. These data indicate that ING1b, according to its SUMOylation status, regulates the hypoxic response by contributing to the HIF1α degradation, and therefore may impede HIF1α-related effects on the maintenance of ADSCs stem cell character.  相似文献   

18.
19.
The insulin-like growth factor-1 (IGF-1) signaling pathway is strongly associated with the risk of various cancers, and its inhibition has emerged as a potent anticancer strategy. Accumulating evidence from in vitro studies has shown that curcumin is a potent inhibitor of the IGF-1 signaling pathway. However, direct evidence that curcumin modulates IGF-1-induced tumorigenesis in a physiological system has not been reported. Therefore, in this study, we assessed the anticarcinogenic activity of curcumin on skin cancer by using BK5.IGF-1 transgenic (Tg) mice that overexpress IGF-1 in the skin epidermis. In 7,12-dimethylbenz(a)anthracene (DMBA)-tetradecanoyl phorbol-13-acetate (TPA) two-stage skin carcinogenesis, a curcumin diet (0.02% wt/wt) fed for 14 wk remarkably reduced mouse skin tumor multiplicity by 53%, epidermal hyperplasia and proliferation compared to the control diet group. TPA-induced phosphorylation of Akt, S6 kinase (S6K), and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) in mouse skin was lower in the curcumin group than in the control group. Curcumin treatment inhibited IGF-1-induced phosphorylation of the IGF-1 receptor, insulin receptor substrate-1, Akt, S6K, and 4EBP1 in the mouse keratinocyte cell line, C50 in a dose-dependent manner. Taken together, these data suggest that curcumin exerts significant anticarcinogenic activity in skin cancer through the inhibition of IGF-1 signaling.  相似文献   

20.
Peng F  Xu Z  Wang J  Chen Y  Li Q  Zuo Y  Chen J  Hu X  Zhou Q  Wang Y  Ma H  Bao Y  Chen M 《PloS one》2012,7(4):e34646

Background

Hypoxic tumor cells can reduce the efficacy of radiation. Antiangiogenic therapy may transiently “normalize” the tumor vasculature to make it more efficient for oxygen delivery. The aim of this study is to investigate whether the recombinant human endostatin (endostar) can create a “vascular normalization window” to alleviate hypoxia and enhance the inhibitory effects of radiation therapy in human nasopharyngeal carcinoma (NPC) in mice.

Methodology/Principal Findings

Transient changes in morphology of tumor vasculature and hypoxic tumor cell fraction in response to endostar were detected in mice bearing CNE-2 and 5–8F human NPC xenografts. Various treatment schedules were tested to assess the influence of endostar on the effect of radiation therapy. Several important factors relevant to the angiogenesis were identified through immunohistochemical staining. During endostar treatment, tumor vascularity decreased, while the basement membrane and pericyte coverage associated with endothelial cells increased, which supported the idea of vessel normalization. Hypoxic tumor cell fraction also decreased after the treatment. The transient modulation of tumor physiology caused by endostar improved the effect of radiation treatment compared with other treatment schedules. The expressions of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), MMP-9, and MMP-14 decreased, while the level of pigment epithelium-derived factor (PEDF) increased.

Conclusions

Endostar normalized tumor vasculature, which alleviated hypoxia and significantly sensitized the function of radiation in anti-tumor in human NPC. The results provide an important experimental basis for combining endostar with radiation therapy in human NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号