共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell death mediated through the intrinsic, Bcl-2-regulated mitochondrial apoptosis signalling pathway is critical for lymphocyte development and the establishment of central and maintenance of peripheral tolerance. Defects in Bcl-2-regulated cell death signalling have been reported to cause or correlate with autoimmunity in mice and men. This review focuses on the role of Bcl-2 family proteins implicated in the development of autoimmune disorders and their potential as targets for therapeutic intervention. 相似文献
2.
Tumour development requires a combination of defects that allow nascent neoplastic cells to become self-sufficient for cell proliferation and insensitive to signals that normally restrain cell growth. Among the latter, evasion of programmed cell death (apoptosis) has proven to be critical for the development and sustained growth of many, perhaps all, cancers. Apoptotic cell death is regulated by complex interactions between pro-survival members and two subgroups of pro-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family. In this invited review article, we reminisce on the discovery of Bcl-2, the first regulator of cell death identified, we discuss the mechanisms that control apoptotic cell death, focussing on how defects in this process promote the development and sustained growth of tumours and also affect their responses to anticancer therapeutics and, finally, we describe how current knowledge of the regulatory networks of apoptosis is exploited to develop novel approaches for cancer therapy. 相似文献
3.
Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor 总被引:2,自引:0,他引:2
Ray S Bucur O Almasan A 《Apoptosis : an international journal on programmed cell death》2005,10(6):1411-1418
Overexpression of anti-apoptotic Bcl-2 family proteins may play an important role in the aggressive behavior of prostate cancer
cells and their resistance to therapy. The Bcl-2 homology 3 domain (BH3) is a uniquely important functional element within
the pro-apoptotic class of the Bcl-2-related proteins, mediating their ability to dimerize with other Bcl-2-related proteins
and promote apoptosis. The BH3 inhibitors (BH3Is) function by disrupting the interactions mediated by the BH3 domain between
pro- and anti-apoptotic members of the Bcl-2 family and liberating more Bax/Bak to induce mitochondrial membrane permeabilization.
LNCaP-derived C4-2 human prostate cancer cells are quite resistant to non-tagged, human recombinant soluble Apo2 ligand [Apo2L,
also Tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL], a tumor specific drug that is now in clinical
trials. However, when Apo2L/TRAIL was combined with the Bcl-xL inhibitor, BH3I-2′, it induced apoptosis synergistically through
activation of Caspase-8 and the proapoptotic Bcl-2 family member Bid, resulting in the activation of effector Caspase-3 and
proteolytic cleavage of Poly(ADP-ribose) polymerase, events that were blocked by the pan-caspase inhibitor zVAD-fmk. Our data
indicate that, in combination with the BH3 mimetic, BH3I-2′, Apo2L/TRAIL synergistically induces apoptosis in C4-2 human prostate
cancer cells through both the extrinsic and intrinsic apoptotic pathways. 相似文献
4.
How the Bcl-2 family of proteins interact to regulate apoptosis 总被引:24,自引:0,他引:24
Commitment of cells to apoptosis is governed largely by protein-protein interactions between members of the Bcl-2 protein family. Its three sub-families have distinct roles: the BH3-only proteins trigger apoptosis by binding via their BH3 domain to pro-survival relatives, while the pro-apoptotic Bax and Bak have an essential downstream role involving disruption of organellar membranes and induction of caspase activation. The BH3-only proteins act as damage sensors, held inert until their activation by stress signals. Once activated, they were thought to bind promiscuously to pro-survival protein targets but unexpected selectivity has recently emerged from analysis of their interactions. Some BH3-only proteins also bind to Bax and Bak. Whether Bax and Bak are activated directly by these BH3-only proteins, or indirectly as a consequence of BH3-only proteins neutralizing their pro-survival targets is the subject of intense debate. Regardless of this, a detailed understanding of the interactions between family members, which are often selective, has notable implications for designing anti-cancer drugs to target the Bcl-2 family. 相似文献
5.
The three major subgroups of the Bcl-2 family, including the prosurvival Bcl-2-like proteins, the proapoptotic Bcl-2 homology (BH)3-only proteins and Bax/Bak proteins, regulate the mitochondrial apoptotic pathway. In addition, some outliers within the Bcl-2 family do not fit into these subgroups. One of them, Bcl-G, has a BH2 and a BH3 region, and was proposed to trigger apoptosis. To investigate the physiological role of Bcl-G, we have inactivated the gene in the mouse and generated monoclonal antibodies to determine its expression. Although two isoforms of Bcl-G exist in human, only one is found in mice. mBcl-G is expressed in a range of epithelial as well as in dendritic cells. Loss of Bcl-G did not appear to affect any of these cell types. mBcl-G only binds weakly to prosurvival members of the Bcl-2 family, and in a manner that is independent of its BH3 domain. To understand what the physiological role of Bcl-G might be, we searched for Bcl-G-binding partners through immunoprecipitation/mass spectroscopy and yeast-two-hybrid screening. Although we did not uncover any Bcl-2 family member in these screens, we found that Bcl-G interacts specifically with proteins of the transport particle protein complex. We conclude that Bcl-G most probably does not function in the classical stress-induced apoptosis pathway, but rather has a role in protein trafficking inside the cell. 相似文献
6.
Lee DH Ha JH Kim Y Bae KH Park JY Choi WS Yoon HS Park SG Park BC Yi GS Chi SW 《Biochemical and biophysical research communications》2011,(4):40083-547
Clusterin (CLU) is a multifunctional glycoprotein that is overexpressed in prostate and breast cancers. Although CLU is known to be involved in the regulation of apoptosis and cell survival, the precise molecular mechanism underlying the pro-apoptotic function of nuclear CLU (nCLU) remains unclear. In this study, we identified a conserved BH3 motif in C-terminal coiled coil (CC2) region of nCLU by sequence analysis and characterized the molecular interaction of the putative nCLU BH3 domain with anti-apoptotic Bcl-2 family proteins by nuclear magnetic resonance (NMR) spectroscopy. The chemical shift perturbation data demonstrated that the nCLU BH3 domain binds to pro-apoptotic BH3 peptide-binding grooves in both Bcl-XL and Bcl-2. A structural model of the Bcl-XL/nCLU BH3 peptide complex reveals that the binding mode is remarkably similar to those of other Bcl-XL/BH3 peptide complexes. In addition, mutational analysis confirmed that Leu323 and Asp328 of nCLU BH3 domain, absolutely conserved in the BH3 motifs of BH3-only protein family, are critical for binding to Bcl-XL. Taken altogether, our results suggest a molecular basis for the pro-apoptotic function of nCLU by elucidating the residue specific interactions of the BH3 motif in nCLU with anti-apoptotic Bcl-2 family proteins. 相似文献
7.
Bcl-2-related protein family gene expression during oligodendroglial differentiation 总被引:4,自引:0,他引:4
Oligodendroglial lineage cells (OLC) vary in susceptibility to both necrosis and apoptosis depending on their developmental stages, which might be regulated by differential expression of Bcl-2-related genes. As an initial step to test this hypothesis, we examined the expression of 19 Bcl-2-related genes in purified cultures of rat oligodendroglial progenitors, immature and mature oligodendrocytes. All 'multidomain' anti-apoptotic members (Bcl-x, Bcl-2, Mcl-1, Bcl-w and Bcl2l10/Diva/Boo) except Bcl2a1/A1 are expressed in OLC. Semiquantitative and real-time RT-PCR revealed that Bcl-xL and Mcl-1 mRNAs are the dominant anti-apoptotic members and increase four- and twofold, respectively, with maturation. Bcl-2 mRNA is less abundant than Bcl-xL mRNA in progenitors and falls an additional 10-fold during differentiation. Bcl-w mRNA also increases, with significant changes in its splicing pattern, as OLC mature. Transfection studies demonstrated that Bcl-xL overexpression protects against kainate-induced excitotoxicity, whereas Bcl-2 overexpression does not. As for 'multidomain' pro-apoptotic members (Bax, Bad and Bok/Mtd), Bax and Bak are highly expressed throughout differentiation. Among 'BH3 domain-only' members examined (Bim, Biklk, DP5/Hrk, Bad, Bid, Noxa, Puma/Bbc3, Bmf, BNip3 and BNip3L), BNip3 and Bmf mRNAs increase markedly during differentiation. These results provide basic information to guide further studies on the roles for Bcl-2-related family proteins in OLC death. 相似文献
8.
9.
BNips: a group of pro-apoptotic proteins in the Bcl-2 family 总被引:5,自引:0,他引:5
Zhang HM Cheung P Yanagawa B McManus BM Yang DC 《Apoptosis : an international journal on programmed cell death》2003,8(3):229-236
BNip (formerly known as Nip) proteins, including homologues isolated from human, mouse and Caenorhabditis. elegans, are a relatively new subgroup of the Bcl-2 family. These proteins are classified into this family based on limited sequence homology with the Bcl-2 homology domain 3 and carboxyl terminal transmembrane domain. BNip proteins were first discovered based on their interaction with the adenovirus E1B 19 kDa/Bcl-2 family protein and since then, their roles in cell death pathways have been actively studied. However, the precise mechanisms by which the BNip proteins induce apoptosis and/or necrosis remain to be determined. To advance our knowledge, we have provided a summary and review of current literature regarding BNip proteins including comparative sequence analysis, mutational mapping of the functional domains, and cell death mechanisms involving disruption of mitochondrial homeostasis. Since BNip proteins are expressed at high levels in the heart as compared to other organs, their roles in cardiomyocyte injury during hypoxia or viral infection is a focus of this review. Finally, we discuss potential directions for further study on this increasingly important group of pro-apoptotic proteins. 相似文献
10.
11.
Zangemeister-Wittke U Ziegler A 《Apoptosis : an international journal on programmed cell death》1998,3(2):67-74
The Bcl-2 oncoprotein is a potent inhibitor of apoptosis induced by numerous physiological and pathological stimuli, and uncontrolled cell survival due to Bcl-2 overexpression has been shown to contribute to tumour formation and the development of autoimmune diseases. The multifunctional action of Bcl-2 is thought to prevent activation of the ced3/caspase-3 subfamily of ICE proteases, resulting in suppression of the death effector machinery. Since most conventional anti-cancer agents act by triggering this suicide pathway, overexpression of Bcl-2 in cancer cells has also been associated with drug resistance. The antisense approach to inhibition of gene expression relies on the binding of small synthetic oligodeoxynucleotides to a complementary base sequence on a target mRNA. As a consequence, expression of the corresponding gene is downregulated due to endonuclease-mediated hydrolysis of the mRNA strand, or to translational arrest arising from sterie hindrance by the RNA:DNA heterodimer. Since these mechanisms of action differ from those exerted by conventional anticancer agents, antisense oligodeoxynucleotides designed to specifically inhibit bcl-2 gene expression hold great promise as agents that could overcome clinical drug resistance, and improve the treatment outcome of many hitherto incurable cancer diseases. 相似文献
12.
Anti-apoptotic Bcl-2-family proteins (Bcl-2, Bcl-x(L), Bfl-1, Mcl-1, Bcl-W and Bcl-B) have been recently validated as drug discovery targets for cancer, owed to their ability to confer tumor resistance to chemotherapy or radiation. The anti-apoptotic activity of Bcl-2 proteins is due to their ability to heterodimerize with their pro-apoptotic counterparts (proteins such as Bad, Bim or Bid) via a conserved peptide region termed BH3. Thus, molecules that mimic pro-apoptotic BH3 domains represent a direct approach to overcoming the protective effects of anti-apoptotic proteins such as Bcl-2 and Bcl-x(L). Here, we report on the development and evaluation of two novel Lanthanide-based assays that are formatted for high-throughput screening of small molecules capable of antagonizing BH3-Bcl-2 interactions. The assay conditions, robustness and reproducibility (Z' factors) are described. These assays represent useful tools to enable further studies in the search for novel, safe and effective anti-cancer agents targeting Bcl-2-family proteins. 相似文献
13.
Bcl-2, originally identified as a universal inhibitor of apoptotic cell death, has since been implicated in suppressing autophagy, the cell's quality control mechanism. Our recent study demonstrates that the anti-autophagic aspect of Bcl-2 can function as a promoter of oncogenic growth, independently of its role in apoptosis signaling. It is likely that the increase in Bcl-2 often seen in breast and other cancers might render cells error-prone by blunting autophagy, while concomitantly keeping damaged cells alive. The outcome of such a 'double hit' of Bcl-2 may synergistically promote tumor growth and increase the chance of cancer development and drug resistance. 相似文献
14.
Noguchi M Kabayama K Uemura S Kang BW Saito M Igarashi Y Inokuchi J 《Glycobiology》2006,16(7):641-650
The ganglioside patterns have been shown to dramatically change during cell proliferation and differentiation and in certain cell-cycle phases, brain development, and cancer malignancy. To investigate the significance of the ganglioside GM3 in cancer malignancy, we established GM3-reconstituted cells by transfecting the cDNA of GM3 synthase into a GM3-deficient subclone of the 3LL Lewis lung carcinoma cell line (Uemura, S. (2003) Glycobiology, 13, 207-216). The GM3-reconstituted cells were resistant to apoptosis induced by etoposide and doxorubicin. There were no changes in the expression levels of topoisomerase IIalpha or P-glycoprotein, or in the uptake of doxorubicin between the GM3-reconstituted cells and the mock-transfected cells. To understand the mechanism of the etoposide-resistant phenotype acquired in the GM3-reconstituted cells, we investigated their apoptotic signaling. Although no difference was observed in the phosphorylation of p53 at serine-15-residue site by etoposide between the GM3-reconstituted cells and mock-transfected cells, the activation of both caspase-3 and caspase-9 was specifically inhibited in the former. We found that the anti-apoptotic protein B-cell leukemia/lymphoma 2 (Bcl-2) was increased in the GM3-reconstituted cells. Moreover, wild-type 3LL Lewis lung carcinoma cells, which have an abundance of GM3, exhibited no DNA fragmentation following etoposide treatment and expressed higher levels of the Bcl-2 protein compared with the J5 subclone. Thus, these results support the conclusion that endogenously produced GM3 is involved in malignant phenotypes, including anticancer drug resistance through up-regulating the Bcl-2 protein in this lung cancer cell line. 相似文献
15.
Raimundo Fernandes de Araújo Júnior Ana Luiza CS Leit?o Oliveira Raniere Fagundes de Melo Silveira Hugo Alexandre de Oliveira Rocha Pedro de Fran?a Cavalcanti Aurigena Antunes de Araújo 《Experimental biology and medicine (Maywood, N.J.)》2015,240(1):34-44
It has been well-characterized that the renin-angiotensin system (RAS) physiologically regulates systemic arterial pressure. However, RAS signaling has also been shown to increase cell proliferation during malignancy, and angiotensin receptor blockers (ARBs) are able to decrease pro-survival signaling by inhibiting anti-apoptotic molecules and suppressing caspase activity. In this study, the apoptotic effects of telmisartan, a type of ARB, was evaluated using a non-cancerous human renal cell line (HEK) and a human renal cell carcinoma (RCC) cell line (786). Both types of cells were treated with telmisartan for 4 h, 24 h, and 48 h, and then were assayed for levels of apoptosis, caspase-3, and Bcl-2 using MTT assays, flow cytometry, and immunostaining studies. Analysis of variance was used to identify significant differences between these data (P < 0.05). Following the treatment of 786 cells with 100 µM and 200 µM telmisartan, a marked inhibition of cell proliferation was observed. 50 µM cisplatin also caused high inhibition of these cells. Moreover, these inhibitions were both concentration- and time-dependent (P < 0.05). Various apoptotic effects were also observed compared with control cells at the 24 h and 48 h timepoints assayed (P < 0.001). Furthermore, positive caspase-3 staining and down-regulation of Bcl-2 were detected, consistent with induction of cell death. In contrast, treatment of HEK cells with telmisartan did not produce an apoptotic effect compared with control cells at the 24 h timepoint (P > 0.05). Treatment with cisplatin promoted in HEK cells high index of apoptosis (P < 0.001). Taken together, these results suggest that telmisartan induces apoptosis via down-regulation of Bcl-2 and involvement of caspase-3 in human RCC cells. 相似文献
16.
The pro-apoptotic BH3-only protein, BIK, is widely expressed and although many critical functions in developmental or stress-induced death have been ascribed to this protein, mice lacking Bik display no overt abnormalities. It has been postulated that Bik can serve as a tumour suppressor, on the basis that its deficiency and loss of apoptotic function have been reported in many human cancers, including lymphoid malignancies. Evasion of apoptosis is a major factor contributing to c-Myc-induced tumour development, but despite this, we found that Bik deficiency did not accelerate Eμ-Myc-induced lymphomagenesis. Co-operation between BIK and NOXA, another BH3-only protein, has been previously described, and was attributed to their complementary binding specificities to distinct subsets of pro-survival BCL-2 family proteins. Nevertheless, combined deficiency of Bik and Noxa did not alter the onset of Eμ-Myc transgene induced lymphoma development. Moreover, although p53-mediated induction of Bik has been reported, neither Eμ-Myc/Bik−/− nor Eμ-Myc/Bik−/−Noxa−/− lymphomas were more resistant than control Eμ-Myc lymphomas to killing by DNA damaging drugs, either in vitro or in vivo. These results suggest that Bik, even in combination with Noxa, is not a potent suppressor of c-Myc-driven tumourigenesis or critical for chemotherapeutic drug-induced killing of Myc-driven tumours. 相似文献
17.
Bcl—2家族蛋白与细胞凋亡 总被引:30,自引:2,他引:30
Bcl 2家族蛋白是在细胞凋亡过程中起关键性作用的一类蛋白质。在线粒体上 ,Bcl 2家族蛋白通过与其他凋亡蛋白的协同作用 ,调控线粒体结构与功能的稳定性 ,发挥着细胞凋亡“主开关”的作用。Bcl 2家族包括两类蛋白质 :一类是抗凋亡蛋白 ,另一类是促凋亡蛋白。在细胞凋亡时 ,Bcl 2家族中的促凋亡蛋白成员发生蛋白质的加工修饰 ,易位到线粒体的外膜上 ,引起细胞色素c、凋亡诱导因子等其他促凋亡因子的释放 ,导致细胞凋亡 ;而平时被隔离在线粒体等细胞器内的该家族的抗凋亡蛋白成员则抑制细胞色素c和凋亡诱导因子等促凋亡因子的释放 ,具有抑制细胞凋亡的功能。但一旦这类抗凋亡蛋白成员与激活的促凋亡蛋白发生相互作用后 ,便丧失了对细胞凋亡的抑制作用 ,造成线粒体等细胞器的功能丧失和细胞器内促凋亡因子的释放 ,导致细胞凋亡。现以Bcl 2家族调控细胞凋亡的最新研究进展为基础 ,对Bcl 2家族成员及其蛋白质结构、分布和调控细胞凋亡的分子机制进行综述。 相似文献
18.
T. Richard J. C. Delaunay J. M. Mérillon J. P. Monti 《Journal of biomolecular structure & dynamics》2013,31(3):379-385
Abstract Bradykinin is a bioactive hormone involved in a variety of physiological processes. In various solvents, this peptide adopts β-turn structures. The C-terminal turn is a structural feature for the receptor affinity of agonists and antagonists while the N-terminal turn might be important for antagonistic activities. Polyphenols like dimeric proanthocyanidin B3 interact with the peptide. Thus to investigate the effects of polyphenols on bradykinin activity and structure, we studied the interaction in the structuring solvent DMSO which can be a close mimic of aqueous physiological environments like receptor-binding sites. Bradykinin alone presented a folded structure with two turns. B3 interacted with the peptide C-terminus and involved the loss of the bend structure of this region, while the N-ter-minus turn was maintained. Numerous studies have shown that polyphenolic molecules can act upon various biological targets, and the formation of this type of complex might be one of the possible modes of action. 相似文献
19.
Bu SZ Huang Q Jiang YM Min HB Hou Y Guo ZY Wei JF Wang JW Ni X Zheng SS 《Apoptosis : an international journal on programmed cell death》2006,11(3):413-425
INTRODUCTION: 2-Methoxyestradiol (2ME2), a natural endogenous product of estradiol (E2) metabolism, has been shown to be a selective apoptotic agent for cancer cells but not for normal cells. In this study, we determined that 2ME2 counteracts E2-stimulated cell growth and induces apoptosis in ovarian carcinoma cells. In addition, we demonstrate that 2ME2 induces apoptosis via p38 and phospho-Bcl2 pathway. METHODS: 2ME2 and/or E2 were administered to the OVCAR-3 (human ovarian cancer) cell line. Cell growth inhibition was analyzed by [3H] Thymidine incorporation assay and DNA fluorometric assay. Cell apoptosis was tested by DNA fragmentation analysis and FACS. The signaling pathway was determined by a series of biochemical assays. RESULTS: 2ME2 inhibited estradiol-stimulated cell growth and induced apoptosis in an ovarian carcinoma cell line. MAPK and p38, but not JNK, were found to be critical mediators in this process. Expression of a dominant negative mutant of p38 kinase or p38 specific inhibitor, SB 203580, almost completely blocked the process. Furthermore, Bcl-2 phosphorylation was required for 2ME2-induced effects. CONCLUSION: Our data suggest that 2ME2 inhibits E2-stimulated proliferation and induces apoptosis in ovarian carcinoma cells. Furthermore, activation of p38 and phosphorylation of Bcl-2 plays a critical role in the mechanism. 2ME2 therefore, may have a clinical application for the treatment of ovarian cancer. 相似文献
20.
Onyinyechukwu Uchime Zhou Dai Nikolaos Biris David Lee Sachdev S. Sidhu Sheng Li Jonathan R. Lai Evripidis Gavathiotis 《The Journal of biological chemistry》2016,291(1):89-102
The BCL-2 protein family plays a critical role in regulating cellular commitment to mitochondrial apoptosis. Pro-apoptotic Bcl-2-associated X protein (BAX) is an executioner protein of the BCL-2 family that represents the gateway to mitochondrial apoptosis. Following cellular stresses that induce apoptosis, cytosolic BAX is activated and translocates to the mitochondria, where it inserts into the mitochondrial outer membrane to form a toxic pore. How the BAX activation pathway proceeds and how this may be inhibited is not yet completely understood. Here we describe synthetic antibody fragments (Fabs) as structural and biochemical probes to investigate the potential mechanisms of BAX regulation. These synthetic Fabs bind with high affinity to BAX and inhibit its activation by the BH3-only protein tBID (truncated Bcl2 interacting protein) in assays using liposomal membranes. Inhibition of BAX by a representative Fab, 3G11, prevented mitochondrial translocation of BAX and BAX-mediated cytochrome c release. Using NMR and hydrogen-deuterium exchange mass spectrometry, we showed that 3G11 forms a stoichiometric and stable complex without inducing a significant conformational change on monomeric and inactive BAX. We identified that the Fab-binding site on BAX involves residues of helices α1/α6 and the α1-α2 loop. Therefore, the inhibitory binding surface of 3G11 overlaps with the N-terminal activation site of BAX, suggesting a novel mechanism of BAX inhibition through direct binding to the BAX N-terminal activation site. The synthetic Fabs reported here reveal, as probes, novel mechanistic insights into BAX inhibition and provide a blueprint for developing inhibitors of BAX activation. 相似文献