首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used immunohistochemical procedures to investigate embryonic erythropoiesis in serial sections of chicken embryos after 2-13 days of incubation. Antibodies specific for the erythrocyte-specific histone H5, for embryonic hemoglobin, and for adult hemoglobin were used as markers for general, primitive, and definitive erythropoiesis, respectively. Histone H5 was present in erythrocytes at all of the stages studied, i.e., in both the primitive and definitive cells. Cell of the definitive lineage were first detected, at about 5-6 days of incubation, in erythroid foci in the mesenchyme around the vitelline stalk. At 7-9 days of incubation, a massive mesenchymal conglomeration of erythropoietic cells developed, extending from the cervical to the abdominal region and ventrally to the vertebral body, with its largest extensions being around the arteries in the mediastinum. Immunostaining revealed that these erythroid cells belonged to the definitive erythropoietic lineage. These cells had disappeared completely after 12 days of incubation, i.e., before erythropoiesis is visible in the bone marrow. These observations are consistent with the notion that the yolk sac is essential for the formation of the definitive erythroid lineage.  相似文献   

2.
3.
Chemical identifications of various hemoglobin types were performed on unfractionated erythroid cells derived from chicken embryos at 5 and 7 days of development and on purified primitive and definitive cells. Proteins were pulse-labelled in primitive erythroid cells at various times of culture to identify those actually synthesized. The data show that primitive cells contain and synthesize only embryonic hemoglobins at all stages of maturation and definitive cells contain adult and minor embryonic hemoglobins, but no major embryonic hemoglobins, not even in trace amounts. These results support a model for hemoglobin switch in the chicken embryo based on cell line substitution.  相似文献   

4.
The hemoglobins of the chicken embryo at several stages of development have been isolated in pure form by column chromatography and their relative amounts and globin compositions determined. The analyses on separated primitive and definitive erythrocytes show that the first contain four hemoglobins different from the adult ones. The two major ones at four days, decrease gradually and are no longer detectable from 15 days on. The two minor ones increase up to 6-7 days, then decrease but are still present at hatching. The definitive embryonic erythrocytes contain two hemoglobins identical to the adult ones but their ratios change gradually during development and approach that of the adult hemoglobins at hatching.  相似文献   

5.
In bitterling Acheilognathus rhombeus , developmental arrest always occurred at stage D of the free‐embryonic phase, regardless of incubation temperature. Developmental arrest was terminated only by a cold treatment at 4° C for 60–90 days, initiated 10 days post‐hatching. After the termination of developmental arrest, free‐embryos became larvae c . 6 months after hatching, regardless of the time of initiation and duration of the cold treatment. In hybridization experiments between A. rhombeus and several species of spring‐spawning bitterlings, free‐embryos became free‐swimming larvae within 60 days after hatching in all experiments. Developmental arrest was not observed in any of the hybrids, regardless of parental sex. These results suggest that free‐embryonic diapause in A. rhombeus is not induced by environmental factors, such as cold, but by genetic factors, which are recessive to those in spring‐spawning bitterlings. Free‐embryonic diapause in A. rhombeus appears to be an adaptation to winter, which might have evolved with reproduction in autumn among autumn‐spawning bitterling species. This is the only report of free‐embryonic diapause after hatching in fishes, and only the second example of diapause in fishes, along with annual killifishes (Rivulidae).  相似文献   

6.
Changes in levels of biosynthesis of DNA, RNA, and histones were compared with relative proportions of each histone class during primitive erythropoiesis in embryonic chicks. We confirmed that erythrocyte-specific histone 5 (H5) was substantial in the earliest accessible, erythroblast-enriched stage and that it doubled in relative amount between polychromatic and orthochromatic stages to about 1 mol per 2 mol of each nucleosomal histone, still considerable less than in adult definitive erythrocytes. No other histones changed during primitive erythropoiesis, but the molar proportion of histone 1 (H1) always exceeded that of H5 in these cells, unlike definitive erythrocytes. The increase in content of H5 was accompanied by continued decline in synthesis of the other histones and DNA. The accumulation of H5 during development appears to occur in steps corresponding to the maturation of the primitive and definitive erythroid cell lines. Lysine-rich histones were more easily extracted from nuclei of the erythrosynthesis in whole cells and in isolated nuclei.  相似文献   

7.
Cells prepared from 1-day-old chick blastoderms were infected with a temperature-sensitive mutant of avian erythroblastosis virus ( ts AEV). Clonal strains of transformed erythroblasts were isolated from the infected blastoderm cells. By shift to the nonpermissive temperature, these cells could be induced to differentiate into erythrocyte-like cells which expressed embryonic haemoglobins. Embryonic haemoglobins could not be detected in ts AEV-transformed erythroblasts from adult bone marrow when induced to differentiate under the same conditions. In contrast to normal primitive erythrocytes, ts AEV-infected embryonic erythroblasts differentiated in vitro expressed also adult haemoglobin. These results suggest an influence of the haematopoietic environment on the switch from embryonic to adult erythrocytes.  相似文献   

8.
Line-restricted hemoglobin synthesis in chick embryonic erythrocytes   总被引:1,自引:0,他引:1  
The presence of embryonic hemoglobin in early definitive erythrocytes was checked by indirect immunofluorescence assay, using specific antibodies raised against embryonic Hb P. As positive control we used anti-Hb A which reacted with the alpha A chain shared by the minor embryonic Hb E and the adult Hb A. The assay was performed using blood smears from embryos between 6 and 15 days of incubation and yolk sac sections from embryos between 4 and 6 days. Hb P was never detected in the definitive line in circulating erythrocytes or in maturing erythroblasts still sequestered in the blood islands of the yolk sac. The expression of the 'specific' embryonic genes is thus restricted to the primitive line (as the 'specific' adult beta gene is restricted to the definitive line), and the hemoglobin switch is the result of the progressive substitution of the primitive line by the definitive one.  相似文献   

9.
Summary The developmental fate of Syrian hamster yolk-sac (primitive) erythroid cells was examined in vitro. Highly purified yolk-sac erythroid cells at the polychromatophilic stage, obtained from the peripheral blood of embryos at day 10 of gestation, showed morphological and biochemical changes in our modified semi-solid culture system. Several morphological changes observed in the primitive erythroid cell cultures, such as nuclear condensation, approach of nuclei to the periphery of cells, development by cells of an extended pear-like shape, enucleation, and an increase in haemoglobin content, were quite similar to those of the terminal differentiation of fetal liver or adult bone marrow (definitive) erythroid cells. In addition, the transition of molecular species of haemoglobin from the embryonic to the fetal/adult pattern was also observed in our culture system. Thus we provide evidence, by the in vitro culture of yolk-sac erythroid cells, that primitive erythroid cells undergo terminal differentiation in a manner similar to that of definitive erythroid cells.  相似文献   

10.
Hemoglobin DDavis (Hb DD), an autosomal codominant in chickens, the αD-globin chain of Hb M of primitive cells and Hb D of definitive erythrocytes. Erythropoiesis and Hb synthesis was investigated in normal, heterozygous, and homozygous Hb DD mutant embryos (stages 15–44) and adults. The time of appearance, morphology, relationships to developmental changes, and number of primitive and definitive cells were determined. Primitive hemoglobins between stages 17 and 44 showed four components, P1, P2, E, and M (or MD), on high-resolution isoelectric focusing gels. Comparison of P1P2 ratios in the four phenotypes indicated that homozygous Hb DD embryos had an increased proportion of Hb P2 relative to Hb P1 between stages 17 and 35. This difference coincided with an increase in the number of large primitive cells. In all phenotypes the proportions of primitive hemoglobins decreased after stage 25 and they were not detected after stage 40. Basophilic definitive erythroblasts were present in cell suspensions from all phenotypes between stages 24 and 25. Hb A, the major Hb and Hb D, the minor Hb, of definitive cells of embryos and adults were detected by isoelectric focusing of lysates by stage 29. Definitive cells from late embryos of all phenotypes had higher proportions of Hb D (or Hb DD) than did red cells from corresponding adult birds. Heterozygous Hb DD embroys and adults had both Hb D and Hb DD. Hb DD comprises about 30% of the total minor Hb rather than 50% expected for heterozygosity at a single locus. In this respect heterozygous Hb DD chick embryos and adult birds are similar to certain heterozygous α-chain variants in humans. A minor Hb, H, found in lysates of later embryos disappears in lysates of normal chicks 65 days after hatching, but was present in the circulation of homozygous Hb DD chicks until at least 195 days after hatching. Additionally, several minor Hb components which may be asymmetrical hybrids or derived precursors of Hb A and Hb D (or Hb DD) were observed. This study provides the precise developmental stages when the switchover of erythroid cell populations and hemoglobins in the chick embryo occurs. This is the first investigation of an α-globin chain mutant which is synthesized during all stages of red cell development and may be a useful animal model for the study of hemoglobinopathies in vertebrates.  相似文献   

11.
12.
Summary The cytological changes in the primitive and definitive erythrocytes of the incubating chick have been followed. Observations have been made on the nucleoli, vital granules, mitochondria,Golgi apparatus, reticulum ofSinigaglia and the reticulation patterns of the basophilic substance. The cells of the primitive and definitive lines are ordinarily readily distinguished from one another. Data are included on the rate of disappearance of the primitive cells from the circulation. They may persist as long as two weeks after hatching. Giant primitive erythrocytes are common during the first week of incubation. The cells have one, two three or four nuclei. The nuclearplasma relationship is maintained somewhere near a constant. These atypical cells are due to aberrations in mitosis. Data on the percentage of mitosis in both types of erythrocytes are also included. The initial activity of the spleen and bone-marrow is reflected in the blood stream. There is a distinct rise in the proportion of young definitive erythrocytes. An attempt is made to correlate the findings ofHall (1934) on the changing affinity of the hemoglobin for oxygen with the changing blood picture. The primitive line does not persist long enough to account for the phenomenon. It is suggested, however, that the hemoglobin of the erythrocytes produced by the yolk sac may differ from that of the cells produced by the spleen and bone-marrow. With Plates I–III.  相似文献   

13.
The ontogeny of haematopoiesis in the perciform fish, spot Leiostomus xanthurus , differed from that reported as the norm for fishes, as exemplified by the cypriniform zebrafish Danio rerio , and observed in the batrachoidiform oyster toadfish Opsanus tau . Erythropoiesis in spot was first evident in the head kidney of yolk‐sac larvae 3 days after hatching (DAH). No embryonic intermediate cell mass (ICM) of primitive stem cells or blood islands on the yolk were apparent within embryos. Erythrocytes were first evident in circulation near the completion of yolk absorption, c . 5 DAH, when larvae were c . 2·0 mm notochord length ( L N). Erythrocyte abundance increased rapidly with larval development for c . 14 to 16 DAH, then became highly variable following changes in cardiac chamber morphology and volume. Erythrocytic haemoglobin (Hb) was not detected within whole larvae until they were 12 DAH or c . 3·1 mm L N, well after yolk and oil‐globule absorption. The Hb was not quantified until larvae were >47 DAH or >7 mm standard length. The delayed appearance of erythrocytes and Hb in spot was similar to that reported for other marine fishes with small embryos and larvae. In oyster toadfish, a marine teleost that exhibits large embryos and larvae, the ICM and Hb were first evident in two bilateral slips of erythropoietic tissue in the embryos, c . 5 days after fertilization. Soon thereafter, erythrocytes were evident in the heart, and peripheral and vitelline circulation. Initial haematopoiesis in oyster toadfish conformed with that described for zebrafish. While the genes that code for the development of haematopoiesis are conserved among vertebrates, gene expression lacks phylogenetic pattern among fishes and appears to conform more closely with phenotypic expression related to physiological and ecological influences of overall body size and environmental oxygen availability.  相似文献   

14.
Interspecific hybrids were obtained by artificial insemination between male European eels Anguilla anguilla and female Japanese eels Anguilla japonica . The hybrid larvae developed normally and survived up to 30 days post‐hatching similarly to normal A. japonica larvae.  相似文献   

15.
16.
During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial‐to‐hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis‐mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS‐mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.  相似文献   

17.
A method of definitive identification of mutant (S1/S1d) and wild-type (+/+) mouse embryos in segregating litters is described, based on the total number of circulating erythrocytes in a unit volume of embryonic blood and the relative proportion of nonnucleated vs. nucleated red blood cells. Evidence is presented that from days 13–17 of gestation, S1/S1d embryos have many fewer fetal liver derived nonnucleated erythrocytes whereas the number of yolk sac-derived nucleated red blood cells is similar between S1/S1d and +/+. Erythroid precursor cells at various stages of maturation in mutant fetal livers are studied by light and electron microscopy, and their fine structure is found to be identical to those present in normal embryos. The number of hemoglobin-containing mature erythroblasts in mutant fetal livers is far fewer than that of the normal, whereas the number of immature erythroid precursors present in a unit area of fetal liver is not significantly different between S1/S1d and +/+. It is suggested that the mutant S1 gene product(s) interferes with or fails to support the differentiation of immature erythroid precursors into hemoglobin synthesizing cells.  相似文献   

18.
19.
The relationship between specific dynamic action and otolith growth in pike   总被引:3,自引:0,他引:3  
The hypothesis was tested that the daily increment width (IW) of the otolith comprises two components, one that correlates with basal metabolic rate (as has been demonstrated previously) and the other that correlates with apparent specific dynamic action ( R sda)(the post‐prandial elevation in metabolism). Simultaneous measurements of IW and metabolic rate before and after a meal were collected from individual pike Esox lucius . After feeding, IW and metabolic rate increased above basal levels for 5–6 days. There was no correlation between daily IW and R sda, reflecting within‐individual difference in the shapes of the post‐prandial responses of the two variables. There was a significant relationship between the total changes of IW and metabolic rate integrated following meals. The magnitude of the post‐prandial response as a proportion of the basal level was larger for metabolic rate than IW, mirroring the previously reported responses of these variables to acute temperature change. This study suggests that analysis of IW has the potential to provide a historic record of energy intake but only when integrated over a period equivalent to the digestion time. Consideration of energy budget theory indicates that IW is unlikely to provide a robust record of short‐term somatic growth if activity metabolism is significant and variable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号