首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD44-negative COS-7 cells were transfected with expression constructs for CD44H (the predominant CD44 isoform), CD44E (epithelial isoform), or truncation mutant derivatives lacking the carboxyl-terminal 67 amino acids of the cytoplasmic domain, CD44HDelta67 and CD44EDelta67. The truncation mutant CD44HDelta67 is identical to a naturally occurring alternatively spliced "short tail" CD44 isoform (CD44st), which incorporates exon 19 in place of exon 20. CD44st lacks intracellular signaling motifs as well as protein domains necessary for interaction with cytoskeletal components. Transfection of COS-7 cells with each construct yielded equivalent levels of mRNA expression, whereas no CD44 expression was observed in parental, nontransfected COS-7 cells. Western analysis and immunostaining of COS-7 transfectants confirmed CD44 protein expression of the truncation mutant derivatives. COS-7 cells transfected with CD44H or CD44E gained the capacity to bind fluorescein-conjugated HA (fl-HA) and assemble HA-dependent pericellular matrices in the presence of exogenously added HA and proteoglycan. In addition, the CD44H- and CD44E-transfected cells were able to internalize surface-bound fl-HA. COS-7 cells transfected with the vector alone or with either of the mutant CD44 isoforms, CD44HDelta67 or CD44EDelta67, did not exhibit the capacity to assemble pericellular matrices or to bind and internalize the fl-HA. Cotransfection of CD44Delta67 mutants together with CD44H reduced the size of the HA-dependent pericellular matrices. Transfection of bovine articular chondrocytes with CD44Delta67 also inhibited pericellular matrix assembly. Collectively, these results indicate an obligatory requirement for the CD44 receptor cytoplasmic domain for ligand (HA) binding, formation and retention of the pericellular matrix, as well as CD44-mediated endocytosis of HA. In addition, the results suggest a potential regulatory role for the differentially expressed alternatively spliced short tail CD44 isoform.  相似文献   

2.
Progressive renal disease is characterized by accumulation of extracellular matrix in the renal cortex. Proximal tubular cells (PTC) may contribute to disease through a process of epithelial-mesenchymal-transition (EMT): phenotypic change, disruption of the tubular basement membrane and migration into the interstitium. Hyaluronan (HA) synthesis and its extracellular organization by hyaladherins affect cell fate in other systems: this study investigated the role of the hyaladherin, tumour necrosis factor-stimulated gene (TSG)-6, in PTC EMT triggered in vitro by transforming growth factor (TGF)β1. TGFβ1 triggered the loss of PTC epithelial phenotype with 60% decreased expression of E-cadherin and 2-3-fold induction of alpha-smooth muscle actin (α-sma). It also increased the expression of TSG-6, HA-synthase-(HAS)2 and the HA-receptor, CD44, to a peak at 8-12h, remaining elevated thereafter. Immuno-localization of HA demonstrated that unstimulated PTC assembled HA in cables and that treatment with TGFβ1 initiated cable disassembly with formation of dense HA-pericellular coats. Stable knockdown of TSG-6 with short-hairpin-RNA increased E-cadherin and HAS2 expression, produced loose HA-pericellular coats, HA cables were absent and cell migration was slowed. Treatment of transfectants with TGFβ1 did not induce α-sma, alter E-cadherin, pericellular-HA or migration but did induce HAS2. This was dependent on the expression of CD44 and was inhibited by CD44-specific siRNA. In summary, TSG-6 was central to EMT through effects on HA macromolecular structure and through CD44-dependent triggering of cell responses. These findings suggest that controlling the assembly of HA by proximal tubular cells may be a novel approach towards intervention in renal disease.  相似文献   

3.
Hyaluronidase can modulate expression of CD44   总被引:5,自引:0,他引:5  
CD44 is a family of transmembrane glycoproteins with multiple isoforms generated by alternative exon splicing of a single gene. CD44 and its variants are expressed on a wide variety of cells including cancer cells. The mechanisms by which splice variant exons are selected are unknown. The presence of hyaluronan in the environment of the cell appears to influence that selection process. The expression of particular splice variants of CD44 as well as the simultaneous presence of hyaluronan is important for motility, invasion, and the metastatic spread of some tumors. The influence of hyaluronidase digestion on the expression of CD44 in human cancer cell lines was examined. CD44 isoforms containing alternatively spliced exons were sensitive to hyaluronidase digestion in all lines examined, but differences between cell lines were observed. Expression of CD44s, the standard form, was resistant to digestion in two of three cell lines. A tentative model was formulated proposing that CD44 isoforms containing splice variants are unstable, requiring the continuous presence of ligand for expression. CD44s is relatively more stable, not requiring the continuous presence of hyaluronan. Additionally, a number of new CD44 variant isoforms, not previously observed, were identified.  相似文献   

4.
《The Journal of cell biology》1996,135(4):1139-1150
Cell contact with the extracellular matrix component hyaluronic acid (HA) plays an important role in many developmental, physiological, and pathological processes, although the regulation of this contact is poorly understood. CD44 proteins carry an amino acid motif that mediates affinity to HA. Artificial clustering of the smallest 85-kD isoform of CD44 (CD44s) has previously been shown to promote binding of the protein to soluble HA (Lesley, J., R. Hyman, and P.W. Kincade. 1993. Adv. Immunol. 54:271-335; Persche, A., J. Lesley, N. English, I. Trowbridge, and R. Hyman. 1995. Eur. J. Immunol. 25:495-501). Here we show that in rat pancreatic carcinoma cells, splice variants of CD44 (CD44v), but not CD44s, form molecular aggregates in the plasma membrane. We demonstrate that reduction-sensitive dimerization of CD44v occurs, and also that larger aggregations of the protein can be stabilized by chemical cross-linking. Different CD44v proteins present on the same cell exclusively form homoaggregates. Molecular clustering does not require an intact cytoplasmic domain of the protein. The ability of cells to bind to soluble HA is upregulated more than one magnitude by the ectopic expression of CD44v4-v7, but only when the CD44v4-v7 protein forms intermolecular aggregates. Tunicamycin treatment inhibits HA binding by CD44v and at the same time destroys oligomerization. We propose that the regulation of clustering of CD44, mediated by factors including the presence of variant exons and glycosylation, allows cells in turn to regulate their HA binding properties.  相似文献   

5.
Increased mucosal expression of TF, the Thomsen-Friedenreich oncofetal blood group antigen (galactose beta1-3 N-acetylgalactosamine alpha-) occurs in colon cancer and colitis. This allows binding of TF-specific lectins, such as peanut agglutinin (PNA), which is mitogenic to the colorectal epithelium. To identify the cell surface TF-expressing glycoprotein(s), HT29 and Caco2 colon cancer cells were surface-labeled with Na[(125)I] and subjected to PNA-agarose affinity purification and electrophoresis. Proteins, approximately 110-180 kDa, present in HT29 but not Caco2 were identified by Western blotting as high molecular weight splice variants of CD44 (CD44v). Selective removal of TF antigen by Streptococcus pneumoniae endo-alpha-N-acetylgalactosaminidase substantially reduced PNA binding to CD44v. Immunoprecipitated CD44v from HT29 cell extracts also expressed sialyl-Tn (sialyl 2-6 N-acetylgalactosaminealpha-). Incubation of PNA 15 microg/ml with HT29 cells caused no additional proliferative effect in the presence of anti-CD44v6 mAb. In colon cancer tissue extracts (N = 3) PNA bound to CD44v but not to standard CD44. These data show that CD44v is a major PNA-binding glycoprotein in colon cancer cells. Because CD44 high molecular weight splice variants are present in colon cancer and inflammatory bowel disease tissue but are absent from normal mucosa, these results may also explain the increased PNA reactivity in colon cancer and inflammatory bowel disease. The coexpression of oncofetal carbohydrate antigens TF and sialyl-Tn on CD44 splice variants provides a link between cancer-associated changes in glycosylation and CD44 splicing, both of which correlate with increased metastatic potential.  相似文献   

6.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

7.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

8.
A parallel-plate flow chamber was used to quantify the detachment of normal cloned rat embryo fibroblasts (CREF) fibroblasts,ras-transformed CREF fibroblasts (CREF T24), and CREF T24 fibroblasts transfected with a Krev/RAP1A suppressor gene (HK B1) from a confluent monolayer of normal CREF fibroblasts to determine if the expression patterns of CD44 variants (mol wt 110 and 140 kDa) corresponded with detachment properties and metastatic potential. In the detachment assay, known shear stresses ranging from 20–24 dyn/cm2 were applied to the adherent cells and the number of cells detached from the monolayer after 180 s was determined. Results showed that cellular expression of CD44 variants correlated with the metastatic potential of the cells and with the cells’ ability to detach from a monolayer of normal cells. Western blot analysis showed a low level of expression of the CD44 variants in the normal cell line, CREF, and the lowly metastatic cell line, HK B1. Detachment studies showed a low percentage of detachment of both of these cell lines from a normal cell monolayer. Tumor-derived (HK B1-T) and lung nodule-derived (HK B1-M) cell lines were established and both formed tumors and metastasis with reduced latency periods as compared to HK B1, but still showed a markedly delayed latency period compared to the highly metastatic cell line, CREF T24. Both of these cell lines showed a higher expression of the CD44 variants as compared to CREF and HK B1, and detached easier than CREF and HK B1. CREF T24 showed a much higher level of expression of the variants and had a higher percentage detachment than all other cell lines. To further test the role of the CD44 variants in the ability of the cells to detach from the normal monolayer, CREF cells were transfected with a DNA construct that constitutively expresses the CD44 variants and the detachment properties of three randomly selected clones were studied. Clones 2 and 3 showed a low level of expression of the CD44 variants after transfection and detached from the normal monolayer similar to CREF. Clone 1 showed a high level of expression of the CD44 variants and the detachment of these cells was significantly higher than CREF. From these results, it is concluded that in the five cell lines studied, expression of the CD44 variants play a significant role in the ability of the cells to detach from a monolayer of normal cells. It is hypothesized that this detachment may be an important component of a cell’s ability to metastasize.  相似文献   

9.
Progressive fibrosis leads to loss of organ function and affects many organs as a result of excessive extracellular matrix production. The ubiquitous matrix polysaccharide hyaluronan (HA) is central to this through association with its primary receptor, CD44, which exists as standard CD44 (CD44s) or multiple splice variants. Mediators such as profibrotic transforming growth factor (TGF)-β1 and proinflammatory interleukin (IL)-1β are widely associated with fibrotic progression. TGF-β1 induces myofibroblast differentiation, while IL-1β induces a proinflammatory fibroblast phenotype that promotes fibroblast binding to monocyte/macrophages. CD44 expression is essential for both responses. Potential CD44 splice variants involved, however, are unidentified. The TGF-β1-activated CD44/epidermal growth factor receptor complex induces differentiation of metastatic cells through interactions with the matrix metalloproteinase inducer, CD147. This study aimed to determine the CD44 variants involved in TGF-β1- and IL-1β-mediated responses and to investigate the potential profibrotic role of CD147. Using immunocytochemistry and quantitative PCR, standard CD44s were shown to be essential for both TGF-β1-induced fibroblast/myofibroblast differentiation and IL-1β-induced monocyte binding. Co-immunoprecipitation identified that CD147 associated with CD44s. Using CD147-siRNA and confocal microscopy, we also determined that incorporation of the myofibroblast marker, αSMA, into F-actin stress fibers was prevented in the absence of CD147 and myofibroblast-dependent collagen gel contraction was inhibited. CD147 did not associate with HA, but removal of HA prevented the association of CD44s with CD147 at points of cell–cell contact. Taken together, our data suggest that CD44s/CD147 colocalization is essential in regulating the mechanical tension required for the αSMA incorporation into F-actin stress fibers that regulates myofibroblast phenotype.  相似文献   

10.
In airways, the cell surface molecule CD44 is upregulated on bronchial epithelial cells in areas of damage. We have shown that a blocking standard CD44 (CD44s) antibody caused a 77% (+/- 19%) inhibition of cell migration at 3 h after mechanical damage and decreased epithelial cell repair of cells grown on cell culture filter inserts. With the use of primary human bronchial epithelial cells and the bronchial epithelial cell line 16HBE 14o-, a CD44s antibody inhibited >95% (P < 0.01) of cell binding to hyaluronic acid (HA). The cytokines TNF-alpha, IFN-gamma, IL-1 beta, and IL-4 stimulated a 2- to 3.5-fold increase in CD44-dependent cell binding to HA. IFN-gamma treatment did not increase CD44 expression as assessed by flow cytometry, although phorbol myristate acetate treatment did. This indicates that IFN-gamma-induced cell binding to HA did not require increased CD44 expression. These data indicate that CD44 is important for bronchial epithelial cell binding to HA and that cytokines known to be expressed in inflammation can increase HA binding independently of the level of CD44 expression.  相似文献   

11.
CD44 is a major cell surface receptor for the glycosaminoglycan, hyaluronan (HA). CD44 binds HA specifically, although certain chondroitin-sulfate containing proteoglycans may also be recognized. CD44 binding of HA is regulated by the cells in which it is expressed. Thus, CD44 expression alone does not correlate with HA binding activity. CD44 is subject to a wide array of post-translational carbohydrate modifications, including N-linked, O-linked and glycosaminoglycan side chain additions. These modifications, which differ in different cell types and cell activation states, can have profound effects on HA binding function and are the main mechanism of regulating CD44 function that has been described to date. Some glycosaminoglycan modifications also affect ligand binding specificity, allowing CD44 to interact with proteins of the extracellular matrix, such as fibronectin and collagen, and to sequester heparin binding growth factors. It is not yet established whether the HA binding function of CD44 is responsible for its proposed involvement in inflammation. It has been shown, however, that CD44/HA interactions can mediate leukocyte rolling on endothelial and tissue substrates and that CD44-mediated recognition of HA can contribute to leukocyte activation. Changes in CD44 expression (mainly up-regulation, occasionally down-regulation, and frequently alteration in the pattern of isoforms expressed) are associated with a wide variety of cancers and the degree to which they spread; however, in other cancers, the CD44 pattern remains unchanged. Increased expression of CD44 is associated with increased binding to HA and increased metastatic potential in some experimental tumor systems; however, in other systems increased HA binding and metastatic potential are not correlated. CD44 may contribute to malignancy through changes in the regulation of HA recognition, the recognition of new ligands and/or other new biological functions of CD44 that remain to be discovered. Abbreviations: aa, amino acid(s); CS, chondroitin sulfate; CSPG, chondroitin sulfate containing proteoglycan; CD44H, ‘hematopoietic’, also called ‘standard’, isoform of CD44 which contains none of the alternatively spliced variant exons; CD44-Rg, CD44 receptor globulin, a secreted chimaeric protein composed of the external domain of the adhesion receptor CD44 and the hinge, CH2 and CH3 regions of human immunoglobulin-G heavy chain; ECM, extracellular matrix; GAG, glycosaminoglycan; HA, hyaluronan; HS, heparan sulfate; KS, keratan sulfate; PB, peripheral blood; PBL, peripheral blood lymphocytes This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Transforming growth factor-beta1 (TGF-beta1) is a key cytokine involved in the pathogenesis of fibrosis in many organs. We previously demonstrated in renal proximal tubular cells that the engagement of the extracellular polysaccharide hyaluronan with its receptor CD44 attenuated TGF-beta1 signaling. In the current study we examined the potential mechanism by which the interaction between hyaluronan (HA) and CD44 regulates TGF-beta receptor function. Affinity labeling of TGF-beta receptors demonstrated that in the unstimulated cells the majority of the receptor partitioned into EEA-1-associated non-lipid raft-associated membrane pools. In the presence of exogenous HA, the majority of the receptors partitioned into caveolin-1 lipid raft-associated pools. TGF-beta1 increased the association of activated/phosphorylated Smad proteins with EEA-1, consistent with activation of TGF-beta1 signaling following endosomal internalization. Following addition of HA, caveolin-1 associated with the inhibitory Smad protein Smad7, consistent with the raft pools mediating receptor turnover, which was facilitated by HA. Antagonism of TGF-beta1-dependent Smad signaling and the effect of HA on TGF-beta receptor associations were inhibited by depletion of membrane cholesterol using nystatin and augmented by inhibition of endocytosis. The effect of HA on TGF-beta receptor trafficking was inhibited by inhibition of HA-CD44 interactions, using blocking antibody to CD44 or inhibition of MAP kinase activation. In conclusion, we have proposed a model by which HA engagement of CD44 leads to MAP kinase-dependent increased trafficking of TGF-beta receptors to lipid raft-associated pools, which facilitates increased receptor turnover and attenuation of TGF-beta1-dependent alteration in proximal tubular cell function.  相似文献   

13.
14.
The hyaluronic acid receptor, CD44, exists as multiple splice variants that appear to have a role in migration of tumor cells. The role of this receptor and its variants in normal wound repair is poorly understood. A central feature of wound repair in the liver is activation and migration of perisinusoidal stellate cells. We have examined CD44 expression by stellate cells from normal or injured rat liver, finding that it increases with injury and involves a distinct set of CD44 splice variants. Among the latter, variants containing the v6 exon (CD44v6) are strikingly increased. Analysis of migration of primary cells on transwell filter inserts reveals that only cells isolated from injured liver are migratory. Also, they move more rapidly on hyaluronic acid than on collagen I or collagen IV. A polyclonal antibody to recombinant CD44v6 blocks migration by 50%, whereas antibody to CD44v4 has no effect. The inhibition is specific for cells migrating on hyaluronic acid and is reversed by synthetic peptide representing the N terminus of the v6 protein. In conclusion, activated stellate cells use CD44v6 and hyaluronic acid for migration. Given the evidence that migration is required for progression of injury with scar formation, blockers of CD44v6 expression or function are candidates for preventing the deleterious effects of chronic fibrosis.  相似文献   

15.
Cell adhesion molecules are considered to be pivotal elements required for proper embryo development. The transmembrane glycoprotein CD44, which is expressed in numerous splice variants on the surface of many different cell types and tissues, has been suggested to be involved in several physiological processes such as cell-cell interactions, signal transduction, and lymphocyte homing and trafficking during embryogenesis and in the adult organism. Some splice variants are thought to play an important role in tumor progression. To investigate the physiological roles of CD44 in vivo, we abolished expression of all isoforms of CD44 in mice by targeted insertion of a lacZ/neo cassette into the reading frame of the leader peptide. CD44-deficient mice are viable without obvious developmental defects and show no overt abnormalities as adults. However, CD44-deficient lymphocytes exhibit impaired entry into the adult thymus, although lymphocyte development is apparently unaltered. Our data indicate that all splice variants of CD44 are dispensable for embryonic development and implicate a critical function for CD44 in lymphocyte recirculation.  相似文献   

16.
Our previous studies have identified TNFalpha as a positive regulator and IL-4 as a negative regulator of human monocyte CD44-HA binding. In order to determine the mechanisms of IL-4- and TNFalpha-mediated regulation of monocyte HA binding, we measured HA binding and CD44 expression on peripheral blood monocytes following monocyte treatment with TNFalpha or IL-4, as well as following monocyte treatment with inhibitors of protein synthesis, N- and O-linked glycosylation, and chondroitin sulfation. IL-4 decreased CD44-HA binding on monocytes initially treated with TNFalpha. Similarly, pretreatment of monocytes with IL-4 prevented subsequent TNFalpha-mediated HA binding. Cycloheximide (protein synthesis inhibitor), tunicamycin (N-linked glycosylation inhibitor), and beta-d-xyloside (chondroitin sulfation inhibitor) all inhibited IL-4-mediated downregulation of TNFalpha-induced monocyte HA binding. Western blot analysis of CD44 from TNFalpha-treated monocytes revealed a 5-10 Mr decrease in the standard isoform of CD44. In contrast, IL-4 treatment of monocytes inhibited CD44-HA binding and reversed the 5- to 10-kDa decrease in monocyte CD44 Mr. Finally, studies with F10.44.2, a CD44 mab that enhances CD44-HA binding, indicated that IL-4 treatment of monocytes not only diminished constitutive HA binding, but also diminished CD44 mab-induced HA binding. Taken together, these data suggested that IL-4-mediated inhibition of TNFalpha-induced monocyte HA binding was dependent not only on protein synthesis, but also on N-linked glycosylation and chondroitin-sulfate modification of either CD44 or, alternatively, another monocyte protein(s) that may regulate the ability of CD44 to bind HA.  相似文献   

17.
Activation of T cells by Ag or stimulation of monocytes with inflammatory cytokines induces CD44 to bind to hyaluronan (HA), an adhesion event implicated in leukocyte-leukocyte, leukocyte-endothelial cell, and leukocyte-stromal cell interactions. We have previously shown that TNF-alpha induces CD44 sulfation in a leukemic cell line, which correlated with the induction of HA binding and CD44-mediated adhesion. In this study, we establish that TNF-alpha and IFN-gamma induce HA binding and the sulfation of CD44 in CD14(+) PBMC, whereas no induced HA binding or CD44 sulfation was observed in CD14(-) PBMC stimulated with TNF-alpha. Treatment of cells with NaClO(3), an inhibitor of sulfation, prevented HA binding in a significant percentage of CD14(+) PBMC induced by TNF-alpha, LPS, IL-1beta, or IFN-gamma. Furthermore, stimulation with TNF-alpha or IFN-gamma in the presence of NaClO(3) reduced the ability of isolated CD44H to bind HA, demonstrating a direct effect of CD44H sulfation on HA binding. In contrast, the transient induction of HA binding in T cells by PHA was not affected by NaClO(3), suggesting that activated T cells do not use sulfation as a mechanism to regulate HA binding. Overall, these results demonstrate that inducible sulfation of CD44H is one mechanism used by CD14(+) peripheral blood monocytes to induce HA binding in response to inflammatory agents such as TNF-alpha and IFN-gamma.  相似文献   

18.
Upon antigen encounter epidermal Langerhans cells (LC) and dendritic cells (DC) emigrate from peripheral organs and invade lymph nodes through the afferent lymphatic vessels and then assemble in the paracortical T cell zone and present antigen to T lymphocytes. Part of this process is mimicked by metastasizing tumor cells. Since splice variants of CD44 promote metastasis to lymph nodes we explored the expression of CD44 proteins on migrating LC and DC. We show that following antigen contact, LC and DC upregulate pan CD44 epitopes and epitopes encoded by variant exons v4, v5, v6 and v9. Antibodies against CD44 epitopes arrest LC in the epidermis, prevent the binding of activated LC and DC to the T cell zones of lymph nodes, and severely inhibit their capacity to induce a delayed type hypersensitivity reaction to a skin hapten in vivo. Our results demonstrate that CD44 splice variant expression is obligatory for the migration and function of LC and DC.  相似文献   

19.
20.
A recently described splice variant of CD44 expressed in metastasizing cell lines of rat tumors has been shown to confer metastatic potential to a non-metastasizing rat pancreatic carcinoma cell line and to non- metastasizing sarcoma cells. Homologues of this variant as well as several other CD44 splice variants are also expressed at the RNA level in human carcinoma cell lines from lung, breast, and colon, and in immortalized keratinocytes. Using antibodies raised against a bacterial fusion protein encoded by variant CD44 sequences, we studied the expression of variant CD44 glycoproteins in normal human tissues and in colorectal neoplasia. Expression of CD44 variant proteins in normal human tissues was readily found on several epithelial tissues including the squamous epithelia of the epidermis, tonsils, and pharynx, and the glandular epithelium of the pancreatic ducts, but was largely absent from other epithelia and from most non-epithelial cells and tissues. In human colorectal neoplasia CD44 variant proteins, including homologues of those which confer metastatic ability to rat tumors, were found on all invasive carcinomas and carcinoma metastases. Interestingly, focal expression was also observed in adenomatous polyps, expression being related to areas of dysplasia. The distribution of the CD44 variants in human tissues suggests that they play a role in a few restricted differentiation pathways and that in colorectal tumors one of these pathways has been reactivated. The finding that metastasis-related variants are already expressed at a relatively early stage in colorectal carcinogenesis and tumor progression, i.e., in adenomatous polyps, suggests the existence of a yet unknown selective advantage linked to CD44 variant expression. The continued expression in metastases would be compatible with a role in the metastatic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号