首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Ascorbic acid and dehydroascorbic acid are unstable in aqueous solution in the presence of copper and iron ions, causing problems in the routine analysis of vitamin C. Their stability can be improved by lowering the pH below 2, preferably with metaphosphoric acid. Dehydroascorbic acid, an oxidised form of vitamin C, gives a relatively low response on the majority of chromatographic detectors, and is therefore routinely determined as the increase of ascorbic acid formed after reduction. The reduction step is routinely performed at a pH that is suboptimal for the stability of both forms. In this paper, the reduction of dehydroascorbic acid with tris-[2-carboxyethyl] phosphine (TCEP) at pH below 2 is evaluated. Dehydroascorbic acid is fully reduced with TCEP in metaphosphoric acid in less than 20 min, and yields of ascorbic acid are the same as at higher pH. TCEP and ascorbic acid formed by reduction, are more stable in metaphosphoric acid than in acetate or citrate buffers at pH 5, in the presence of redox active copper ions. The simple experimental procedure and low probability of artefacts are major benefits of this method, over those currently applied in a routine assay of vitamin C, performed on large number of samples.  相似文献   

2.
We have previously shown that vitamin C (ascorbic acid) can initiate hydroxyl radical formation in copper contaminated household drinking water. In the present study, we have examined the stability of vitamin C in copper and bicarbonate containing household drinking water. In drinking water samples, contaminated with copper from the pipes and buffered with bicarbonate, 35% of the added vitamin C was oxidized to dehydroascorbic acid within 15?min. After 3?h incubation at room temperature, 93% of the added (2?mM) ascorbic acid had been oxidized. The dehydroascorbic acid formed was further decomposed to oxalic acid and threonic acid by the hydrogen peroxide generated from the copper (I) autooxidation in the presence of oxygen. A very modest oxidation of vitamin C occurred in Milli-Q water and in household water samples not contaminated by copper ions. Moreover, addition of vitamin C to commercially sold domestic bottled water samples did not result in vitamin C oxidation. Our results demonstrate that ascorbic acid is rapidly oxidized to dehydroascorbic acid and further decomposed to oxalic- and threonic acid in copper contaminated household tap water that is buffered with bicarbonate. The impact of consuming ascorbic acid together with copper and bicarbonate containing drinking water on human health is discussed.  相似文献   

3.
We have previously shown that vitamin C (ascorbic acid) can initiate hydroxyl radical formation in copper contaminated household drinking water. In the present study, we have examined the stability of vitamin C in copper and bicarbonate containing household drinking water. In drinking water samples, contaminated with copper from the pipes and buffered with bicarbonate, 35% of the added vitamin C was oxidized to dehydroascorbic acid within 15 min. After 3 h incubation at room temperature, 93% of the added (2 mM) ascorbic acid had been oxidized. The dehydroascorbic acid formed was further decomposed to oxalic acid and threonic acid by the hydrogen peroxide generated from the copper (I) autooxidation in the presence of oxygen. A very modest oxidation of vitamin C occurred in Milli-Q water and in household water samples not contaminated by copper ions. Moreover, addition of vitamin C to commercially sold domestic bottled water samples did not result in vitamin C oxidation. Our results demonstrate that ascorbic acid is rapidly oxidized to dehydroascorbic acid and further decomposed to oxalic- and threonic acid in copper contaminated household tap water that is buffered with bicarbonate. The impact of consuming ascorbic acid together with copper and bicarbonate containing drinking water on human health is discussed.  相似文献   

4.
Determination of dehydroascorbic acid in biological samples most commonly involves indirect measurement. The concentration is calculated by subtraction of the measured ascorbic acid concentration from that of total ascorbic acid analyzed after reduction of the dehydroascorbic acid present; a methodology also referred to as subtraction methods. Consequently, successful determination of dehydroascorbic acid is dependent on proper sample handling, quantitative reduction of the compound, and accurate quantification of both ascorbic acid and total ascorbic acid. In this paper, the recently introduced reductant tris[2-carboxyethyl]phosphine (TCEP) is evaluated as a reliable alternative to the commonly used reducing agent dithiothreitol (DTT). The results show that TCEP offers a more efficient reduction of dehydroascorbic acid at low pH compared to that of DTT. Moreover, while DTT maintains a reducing sample environment for less than 24 h, TCEP show complete protection from oxidation of ascorbic acid for at least 96 h following sample preparation. Removal of TCEP prior to analysis is unnecessary. A revised HPLC-EC method incorporating TCEP as reductant as well as the coanalysis of isoascorbic acid and uric acid is presented. The within- and between-day coefficients of variation for the complete assay are less than 1.5 and 3.5% for all analytes. As a whole, the method presented here is simpler and more reliable than existing methods.  相似文献   

5.
A liquid-chromatography (LC) method with ultraviolet detection for measuring ascorbic (AA) and dehydroascorbic acid (DHA) in human blood and serum was studied. The method used an ODS reversed-phase column and cetyltrimethylammonium bromide as an ion-pairing agent. AA was measured before and after the reduction of DHA with dithiothreitol. The absene of interferences resulting from hemolysis products was verified and also the stability of the ascorbic acid in metaphosphoric acid extracts. The analytical parameters, linearity (1–80 μg/ml), accuracy (recovery, 96.7–100.7%) and precision (C.V.=3.1%), show that the method is reliable and adequate for measuring the total vitamin C content in serum and plasma.  相似文献   

6.
Under the cell-free condition, copper is known to oxidize ascorbic acid (the active form of vitamin C) and the event leads to the loss of vitamin C. However, the biological consequence of this interaction was never examined in the presence of cells. We demonstrated in intestinal epithelial cells that dehydroascorbic acid (the oxidized form of ascorbic acid), when generated from ascorbic acid in the presence of copper, can be efficiently transported into the cells and reduced back to ascorbic acid. We also observed in other types of cells the transport and intracellular reduction of dehydroascorbic acid in the presence of copper. In the presence of iron, a metal that also oxidizes ascorbic acid, we observed similar oxidation-related accumulation in intestinal cells. Other metals that do not interact with ascorbic acid had little effect on vitamin C transport. A nonmetal pro-oxidant, hydrogen peroxide, is known to oxidize ascorbic acid and we observed that the oxidation is also accompanied by an increased intracellular accumulation of vitamin C. The efficient coupling between dehydroascorbic acid transport and intracellular reduction could help to preserve the important nutrient when facing oxidative metals in the intestine.  相似文献   

7.
Both ascorbic acid and copper were strong prooxidants in the oxidation of linoleate in a buffered (pH 7.0) aqueous dispersion at 37 degrees C. Minimum concentrations at which catalytic activity was detected were 1.3 x 10(-7) m for copper and 1.8 x 10(-6) m for ascorbic acid. For concentrations up to 10(-3) m, the increase in rate of oxidation with increase in concentration of catalyst was greater for ascorbic acid than for copper. Ascorbic acid had maximum catalytic activity at 2.0 x 10(-3) m, but was still prooxidant at the highest concentration tested (5.0 x 10(-2) m). Dehydroascorbic acid was a weaker prooxidant than ascorbic acid. Further degradation products of ascorbic acid were not prooxidant. In early stages of the oxidation autocatalytic behavior was observed with copper, but not with ascorbic acid. Ascorbic acid functioned as a true catalyst, i.e., it accelerated the reaction but it was not oxidized simultaneously with the linoleate. It is proposed that the dehydroascorbic acid radical initiates the linoleate oxidation reaction.  相似文献   

8.
Summary K562 cells display several possibilities to keep ascorbic acid in the surrounding medium in the reduced state and prevent its loss by degradation of the oxidized form, dehydroascorbic acid: (1) A semidehydroascorbic acid reductase with high affinity for the ascorbate radical scavenges this before it disproportionates into the two parent forms of vitamin C (ascorbate and dehydroascorbic acid). (2) Dehydroascorbic acid in the extracellular medium is slowly converted to ascorbate by a different mechanism with low affinity which may or may not involve uptake of the oxidized and release of the reduced form. (3) Ascorbate remains relatively stable in the cell culture medium in presence, but also in absence of the cells after their removal, This is most probably due to the presence of released peptides in the cell-conditioned medium which can chelate transition metal ions and thus prevent catalytic autoxidation of ascorbate.  相似文献   

9.
The uptake, recycling, and function of ascorbic acid was evaluated in cultured U-937 monocytic cells. Dehydroascorbic acid, the two-electron oxidized form of the vitamin, was taken up on the glucose transporter and reduced to ascorbate to a much greater extent than ascorbate itself was accumulated by the cells. In contrast to dehydroascorbic acid, ascorbate entered the cells on a sodium- and energy-dependent transporter. Intracellular ascorbate enhanced the transfer of electrons across the cell membrane to extracellular ferricyanide. Rates of ascorbate-dependent ferricyanide reduction were saturable, fivefold greater than basal rates, and facilitated by intracellular recycling of ascorbate. Whereas reduction of dehydroascorbic acid concentrations above 400 microM consumed reduced glutathione (GSH), even severe GSH depletion by 1-chloro-2,4-dinitrobenzene was without effect on the ability of the cells to reduce concentrations of dehydroascorbic acid likely to be in the physiologic range (< 200 microM). Dialyzed cytosolic fractions from U-937 cells reduced dehydroascorbic acid to ascorbate in an NADPH-dependent manner that appeared due to thioredoxin reductase. However, thioredoxin reductase did not account for the bulk of dehydroascorbic acid reduction, since its activity was also decreased by treatment of intact cells with 1-chloro-2,4-dinitrobenzene. Thus, U-937 cells loaded with dehydroascorbic acid accumulate ascorbate against a concentration gradient via a mechanism that is not dependent on GSH or NADPH, and this ascorbate can serve as the major source of electrons for transfer across the plasma membrane to extracellular ferricyanide.  相似文献   

10.
In vitro oxidation of ascorbic acid and its prevention by GSH   总被引:4,自引:0,他引:4  
The interaction of glutathione (GSH) with ascorbic acid and dehydroascorbic acid was examined in in-vitro experiments in order to examine the role of GSH in protecting against the autoxidation of ascorbic acid and in regenerating ascorbic acid by reaction with dehydroascorbic acid. If a buffered solution (pH 7.4) containing 1.0 mM ascorbic acid was incubated at 37 degrees C, there was a rapid loss of ascorbic acid in the presence of oxygen. When GSH was added to this solution, ascorbic acid did not disappear. Maximum protection against ascorbic acid autoxidation was achieved with as little as 0.1 mM GSH. Cupric ions (0.01 mM) greatly accelerated the rate of autoxidation of ascorbic acid, an effect that was inhibited by 0.1 mM GSH. Other experiments showed that GSH complexes with cupric ions, resulting in in a lowering of the amount of GSH in solution as measured in GSH standard curves. These results suggest that the inhibition of ascorbic acid autoxidation by GSH involves complexation with cupric ions that catalyze the reaction. When ascorbic acid was allowed to autoxidize at 37 degrees C the subsequent addition of GSH (up to 10 mM) did not lead to the regeneration of ascorbic acid. This failure to detect a direct reaction between GSH and the dehydroascorbic acid formed by oxidation of ascorbic acid under this condition was presumably due to the rapid hydrolysis of dehydroascorbic acid. When conditions were chosen, i.e., low temperature, that promote stability of dehydroascorbic acid, the direct reaction between GSH and dehydroascorbic acid to form ascorbic acid was readily detected. The marked instability of dehydroascorbic acid at 37 degrees C raises questions regarding the efficiency of the redox couple between GSH and dehydroascorbic acid in maintaining the concentration of ascorbic acid in mammalian cells exposed to an oxidative challenge.  相似文献   

11.
Vitamin C homeostasis in skeletal muscle cells   总被引:3,自引:0,他引:3  
In skeletal muscle, vitamin C not only enhances carnitine biosynthesis but also protects cells against ROS generation induced by physical exercise. The ability to take up both ascorbic and dehydroascorbic acid from the extracellular environment, together with the ability to recycle the intracellular vitamin, maintains high cellular stores of ascorbate. In this study, we examined vitamin C transport and recycling, by using the mouse C2C12 and rat L6C5 muscle cell lines, which exhibit different sensitivity to oxidative stress and GSH metabolism. We found that: (1) both cell lines express SVCT2, whereas SVCT1 is expressed at very low levels only in proliferating L6C5 cells; furthermore L6C5 myoblasts are more efficient in ascorbic acid transport than C2C12 myoblasts; (2) C2C12 cells are more efficient in dehydroascorbic acid transport and ascorbyl free radical/dehydroascorbic acid reduction; (3) differentiation is paralleled by decreased ascorbic acid and dehydroascorbic acid transport and reduction and increased ascorbyl free radical reduction; (4) differentiated cells are more responsive to oxidative stress induced by glutathione depletion; indeed, myotubes showed increased SVCT2 expression and thioredoxin reductase-mediated dehydroascorbic acid reduction. From our data, SVCT2 and NADPH-thioredoxin-dependent DHA reduction appears to belong to an inducible system activated in response to oxidative stress.  相似文献   

12.
High-performance liquid chromatography with spectrophotometric detection has been used to separate and quantitate ascorbic acid and dehydroascorbic acid. These components of vitamin C are resolved on a Lichrosorb-NH2 column. The technique is capable of quantitatively following oxidation of ascorbic acid to dehydroascorbic acid and the reverse reduction. The technique is demonstrated to be suitable for assay of vitamin C in biological samples, foods, and pharmaceutical vitamin preparations.  相似文献   

13.
A highly sensitive procedure for determining ascorbic acid (AA) and dehydroascorbic acid (DHAA) by high-performance liquid chromatography with electrochemical detection in biological fluids, tissues, and foods is described. AA is separated in a C18 reverse-phase column after extraction from the sample with metaphosphoric acid. An aliquot of 20 microliter of diluted extract is injected into the column for the estimation of AA. DHAA is indirectly estimated by converting it to AA after reduction with DL-homocysteine at pH 7.0-7.2 for 30 min at 25 degrees C. After dilution, a 20-microliter aliquot is injected into the column to obtain total vitamin C (AA + DHAA). The concentration of DHAA is calculated by subtraction. AA can be reproducibly quantified at concentrations as low as 50 pg/20 microliter of sample extract. The method described here used a specially designed mobile phase, gave greater stability and a noiseless baseline, and increased substantially the sensitivity and precision. The procedure is rapid, analysis being completed within 10 min after sample preparation, and has been successfully applied to biological fluids, tissues, and foods.  相似文献   

14.
A marked inhibition of the incorporation of S35-sulfate by normal calf costal cartilage was produced by potassium ascorbate in the presence of catalytic amounts of cupric ions. The effect of the various components of the ascorbic acid oxidizing system (potassium ascorbate, cupric ions, cuprous ions, hydrogen peroxide, dehydroascorbic acid) was investigated. The results of experiments in which hydrogen peroxide, catalase, or sodium azide were used singly or in combination suggest that the inhibition produced by the ascorbic acid oxidizing system is due, to a considerable extent, to the production of hydrogen peroxide. Dehydroascorbic acid was also found to inhibit the incorporation of S35-sulfate by cartilage slices. However, the gradual fall in pH which resulted from the addition of dehydroascorbic acid could account to a large extent for the inhibitory effect observed because the incorporation of S35-sulfate by cartilage slices decreases sharply as the pH is lowered. The incorporation of S35-sulfate by cartilage slices is inhibited also by increasing the concentration of phosphate.  相似文献   

15.
Mitochondria can regenerate ascorbic acid from its oxidized forms, which may help to maintain the vitamin both in mitochondria and in the cytoplasm. In this work, we sought to determine the site and mechanism of mitochondrial ascorbate recycling from dehydroascorbic acid. Rat skeletal muscle mitochondria incubated for 3 h at 37 degrees C with 500 microM dehydroascorbic acid and energy substrates maintained ascorbate concentrations more than twice those observed in the absence of substrate. Succinate-dependent mitochondrial reduction of dehydroascorbic acid was blocked by inhibitors of mitochondrial Complexes II and III. Neither cytochrome c nor the outer mitochondrial membrane were necessary for the effect. The ascorbate radical was generated by mitochondria during treatment with dehydroascorbic acid and was abolished by ferricyanide, which does not penetrate the mitochondrial inner membrane. Together, these results show that energy substrate-dependent ascorbate recycling from dehydroascorbic acid involves an externally exposed portion of mitochondrial complex III.  相似文献   

16.
Vitamin C is essential for many enzymatic reactions and also acts as a free radical scavenger. Specific non-overlapping transport proteins mediate the transport of the oxidized form of vitamin C, dehydroascorbic acid, and the reduced form, L-ascorbic acid, across biological membranes. Dehydroascorbic acid uptake is via the facilitated-diffusion glucose transporters, GLUT 1, 3 and 4, but under physiological conditions these transporters are unlikely to play a major role in the uptake of vitamin C due to the high concentrations of glucose that will effectively block influx. L-ascorbic acid enters cells via Na+-dependent systems, and two isoforms of these transporters (SVCT1 and SVCT2) have recently been cloned from humans and rats. Transport by both isoforms is stereospecific, with a pH optimum of approximately 7.5 and a Na+:ascorbic acid stoichiometry of 2:1. SVCT2 may exhibit a higher affinity for ascorbic acid than SVCT1 but with a lower maximum velocity. SVCT1 and SVCT2 are predicted to have 12 transmembrane domains, but they share no structural homology with other Na+ co-transporters. Potential sites for phosphorylation by protein kinase C exist on the cytoplasmic surface of both proteins, with an additional protein kinase A site in SVCT1. The two isoforms also differ in their tissue distribution: SVCT1 is present in epithelial tissues, whereas SVCT2 is present in most tissues with the exception of lung and skeletal muscle.  相似文献   

17.
We present a fast to perform spectrophotometric method for the quantification of ascorbic acid and its oxidized form dehydroascorbic acid in biological samples. The assay detects a chromophore formed during the reaction of dehydroascorbic acid with methanol in phosphate/citrate buffer. This reaction can also be employed for the determination of ascorbate (vitamin C) in the presence of ascorbate oxidase. The major advantage of the developed protocol for the determination of both forms of vitamin C is a simple spectrophotometrical single end point determination. It is demonstrated that the methanol method is an improvement compared with a commercially available test kit for the determination of vitamin C. Using the methanol method, a dose-dependent increase in intracellular ascorbic acid was determined upon incubation of L-929 cells and RAW 264.7 macrophages with increasing concentrations of extracellular ascorbate. In blood serum, vitamin C was determined at concentrations between 46 and 97 microM. Supplementation with different amounts of ascorbate showed satisfying recovery. In L-929 cells, even unphysiologically high amounts of reactive nitrogen species were unable to completely oxidize intracellular vitamin C.  相似文献   

18.
Vitamin C is essential for many enzymatic reactions and also acts as a free radical scavenger. Specific non-overlapping transport proteins mediate the transport of the oxidized form of vitamin C, dehydroascorbic acid, and the reduced form, Lascorbic acid, across biological membranes. Dehydroascorbic acid uptake is via the facilitated-diffusion glucose transporters, GLUT 1, 3 and 4, but under physiological conditions these transporters are unlikely to play a major role in the uptake of vitamin C due to the high concentrations of glucose that will effectively block influx. L-ascorbic acid enters cells via Na+-dependent systems, and two isoforms of these transporters (SVCT1 and SVCT2) have recently been cloned from humans and rats. Transport by both isoforms is stereospecific, with a pH optimum of ~ 7.5 and a Na+: ascorbic acid stoichiometry of 2 : 1. SVCT2 may exhibit a higher affinity for ascorbic acid than SVCT1 but with a lower maximum velocity. SVCT1 and SVCT2 are predicted to have 12 transmembrane domains, but they share no structural homology with other Na+ co-transporters. Potential sites for phosphorylation by protein kinase C exist on the cytoplasmic surface of both proteins, with an additional protein kinase A site in SVCT1. The two isoforms also differ in their tissue distribution: SVCT1 is present in epithelial tissues, whereas SVCT2 is present in most tissues with the exception of lung and skeletal muscle.  相似文献   

19.
Vitamin C is a wide spectrum antioxidant essential for humans, which are unable to synthesize the vitamin and must obtain it from dietary sources. There are two biologically important forms of vitamin C, the reduced form, ascorbic acid, and the oxidized form, dehydroascorbic acid. Vitamin C exerts most of its biological functions intracellularly and is acquired by cells with the participation of specific membrane transporters. This is a central issue because even in those species capable of synthesizing vitamin C, synthesis is restricted to the liver (and pancreas) from which is distributed to the organism. Most cells express two different transproter systems for vitamin C; a transporter system with absolute specificity for ascorbic acid and a second system that shows absolute specificity for dehydroascorbic acid. The dehydroascorbic acid transporters are members of the GLUT family of facilitative glucose transporters, of which at least three isoforms, GLUT1, GLUT3 and GLUT4, are dehydroascorbic acid transporters. Ascorbic acid is transported by the SVCT family of sodium-coupled transporters, with two isoforms molecularly cloned, the transporters SVCT1 y SVCT2, that show different functional properties and differential cell and tissue expression. In humans, the maintenance of a low daily requirement of vitamin C is attained through an efficient system for the recycling of the vitamin involving the two families of vitamin C transporters.  相似文献   

20.
Human cells transport dehydroascorbic acid through facilitative glucose transporters, in apparent contradiction with evidence indicating that vitamin C is present in human blood only as ascorbic acid. On the other hand, activated host defense cells undergoing the oxidative burst show increased vitamin C accumulation. We analyzed the role of the oxidative burst and the glucose transporters on vitamin C recycling in an in vitro system consisting of activated host-defense cells co-cultured with human cell lines and primary cells. We asked whether human cells can acquire vitamin C by a "bystander effect" by taking up dehydroascorbic acid generated from extracellular ascorbic acid by neighboring cells undergoing the oxidative burst. As activated cells, we used HL-60 neutrophils and normal human neutrophils activated with phorbol 12 myristate 13-acetate. As bystander cells, we used immortalized cell lines and primary cultures of human epithelial and endothelial cells. Activated cells produced superoxide anions that oxidized extracellular ascorbic acid to dehydroascorbic acid. At the same time, there was a marked increase in vitamin C uptake by the bystander cells that was blocked by superoxide dismutase but not by catalase and was inhibited by the glucose transporter inhibitor cytochalasin B. Only ascorbic acid was accumulated intracellularly by the bystander cells. Glucose partially blocked vitamin C uptake by the bystander cells, although it increased superoxide production by the activated cells. We conclude that the local production of superoxide anions by activated cells causes the oxidation of extracellular ascorbic acid to dehydroascorbic acid, which is then transported by neighboring cells through the glucose transporters and immediately reduced to ascorbic acid intracellularly. In addition to causing increased intracellular concentrations of ascorbic acid with likely associated enhanced antioxidant defense mechanisms, the bystander effect may allow the recycling of vitamin C in vivo, which may contribute to the low daily requirements of the vitamin in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号