首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gamma subunit of the Escherichia coli F1 ATPase (ECF1) has been altered by site-directed mutagenesis to create five different mutants, gamma-S8C, gamma-S81C, gamma-T106C, gamma-S179C, and gamma-V286C, respectively. ECF1 isolated from four of these mutants had ATPase activities similar to that of a wild-type isogenic strain used as a control, the exception was enzyme isolated from mutant gamma-S81C, which had an ATPase activity of around 70-80% of the wild type. ECF1 isolated from each of the various mutants was reacted with N-(4-(7-(diethylamino)-4-methylcoumarin-3-yl))maleimide (CM). The fluorescent reagent was incorporated into Cys residues placed at positions 8, 106, 179, and 286, but not at 81, indicating which of these Cys residues are on the surface of the gamma subunit in the enzyme complex. Modification of the Cys at position 106 with CM activated the enzyme, and modification of the Cys at position 8 inhibited ATPase activity a small amount; however, modification of Cys at 179 or 286 had no effect on enzyme activity. The four mutants with a reactive Cys were reacted with tetrafluorophenylazide maleimides (TFPAMs), novel photoactivatable cross-linkers. In the mutant gamma-S8C, cross-links were formed between the introduced Cys on the gamma subunit and sites on the beta subunit. This cross-linking between gamma and beta depended on nucleotide conditions under which the photolysis was carried out, with differently migrating cross-linked products being obtained in ATP + EDTA compared with ATP + Mg2+ or ATP + Mg2+ Pi. Cross-linking between beta and gamma inhibited ATPase activity in proportion to the yield of cross-linked product. In the mutant gamma-V286C, cross-links were formed between the introduced Cys on gamma and the alpha subunit which were the same in all nucleotide conditions and which led to inhibition of ATPase activity.  相似文献   

2.
1. An ATPase complex containing 12 subunits was isoalted from rat liver mitochondria. 2. In vivo inhibition of mitochondrial protein synthesis by the chloramphenicol analogue thiamphenicol leads to the formation of an oligomycin-insensitive membrane-bound ATPase complex in mitochondria of regenerating rat liver. 3. This oligomycin-insensitive, membrane-bound ATPase was isolated by the same procedure as the ATPase complex from regenerating livers of untreated animals. 4. SDS-polyacrylamide gel electrophoresis of in vivo labelled ATPase complexes from control and from thiamphenicol-treated rats reveals that three subunits out of the 12 are not synthesized or assembled when the mitochondrial translation activity is blocked. 5. From the subunits synthesized and assembled when mitochondrial pror (Fo) of the ATPase complex (subunit 5). 6. The oligomycin sensitivity-conferring protein seems absent in the ATPase complex formed in the presence of thiamphenicol.  相似文献   

3.
4.
The LolCDE complex of Escherichia coli belongs to the ATP-binding cassette transporter superfamily and mediates the detachment of lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane. The complex is composed of one copy each of membrane subunits LolC and LolE, and two copies of ATPase subunit LolD. To establish the conditions for reconstituting the LolCDE complex from separately isolated subunits, the ATPase activities of LolD and LolCDE were examined under various conditions. We found that both LolD and LolCDE were inactivated on incubation at 30 degrees C in a detergent solution. ATP and phospholipids protected LolCDE, but not LolD. Furthermore, phospholipids reactivated LolCDE even after its near complete inactivation. LolD was also protected from inactivation when membrane subunits and phospholipids were present together, suggesting the phospholipid-dependent reassembly of LolCDE subunits. Indeed, the functional lipoprotein-releasing machinery was reconstituted into proteoliposomes with E. coli phospholipids and separately purified LolC, LolD and LolE. Preincubation with phospholipids at 30 degrees C was essential for the reconstitution of the functional machinery from subunits. Strikingly, the lipoprotein-releasing activity was also reconstituted from LolE and LolD without LolC, suggesting the intriguing possibility that the minimum lipoprotein-releasing machinery can be formed from LolD and LolE. We report here the complete reconstitution of a functional ATP-binding cassette transporter from separately purified subunits.  相似文献   

5.
J Leszyk  J H Collins  P C Leavis  T Tao 《Biochemistry》1988,27(18):6983-6987
The sulfhydryl-specific, heterobifunctional, photoactivatable cross-linker 4-maleimidobenzophenone (BPMal) was used to study the interaction of rabbit skeletal muscle troponin subunits TnC, TnT, and TnI. TnC was labeled at Cys-98 by the maleimide moiety of BPMal and then mixed with either TnT alone or TnI plus TnT, in the presence of Ca2+. Upon photolysis, TnI and/or TnT formed covalent cross-links with TnC. The cross-linked TnC-TnT heterodimer obtained from the binary complex was digested into progressively smaller cross-linked peptides that were purified by HPLC and then characterized by amino acid analysis and sequencing. An initial cross-linked CNBr fraction contained the expected peptide CB9 (residues 84-135) of TnC, plus CNBr peptides spanning residues 152-230 of TnT. Results from a peptic digest of the CNBr cross-linked fraction permitted the identification of residues 159-197 as the most highly cross-linked region in TnT. A final subtilisin digest yielded a heterogeneous cross-linked fraction, which suggested that an especially high degree of cross-links was formed in the vicinity of residues 175-178 (Met-Lys-Lys-Lys) of TnT. Although this region of TnT had previously been implicated in binding, we show here for the first time that it is close to Cys-98 of TnC. In an analogous study on the binary complex of TnC and TnI [Leszyk, J., Collins, J. H., Leavis, P. C., & Tao, T. (1987) Biochemistry 26, 7042-7047], we previously showed that Cys-98 of TnC was cross-linked mainly to CN4, the "inhibitory region", of TnI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The 50 S ribosomal subunits from Escherichia coli were modified by reaction with 2-iminothiolane under conditions in which 65 sulfhydryl groups, about 2/protein, were added per subunit. Earlier work showed that protein L7/L12 was modified more extensively than the average but that nearly all 50 S proteins contained sulfhydryl groups. Mild oxidation led to the formation of disulfide protein-protein cross-links. These were fractionated by urea gel electrophoresis and then analyzed by diagonal gel electrophoresis. Cross-linked complexes containing two, three, and possibly four copies of L7/L12 were evident. Cross-links between L7/L12 and other ribosomal proteins were also formed. These proteins were identified as L5, L6, L10, L11, and, in lower yield, L9, L14, and L17. The yields of cross-links to L5, L6, L10, and L11 were comparable to the most abundant cross-links formed. Similar experiments were performed with 70 S ribosomes. Protein L7/L12 in 70 S ribosomes was cross-linked to proteins L6, L10, and L11. The strong L7/L12-L5 cross-link found in 50 S subunits was absent in 70 S ribosomes. No cross-links between 30 S proteins and L7/L12 were observed.  相似文献   

7.
The DnaX complex subassembly of the DNA polymerase III holoenzyme is comprised of the DnaX proteins tau and gamma and the auxiliary subunits delta, delta', chi, and psi, which together load the beta processivity factor onto primed DNA in an ATP-dependent reaction. delta' and psi bind directly to DnaX whereas delta and chi bind to delta' and psi, respectively (Onrust, R., Finkelstein, J., Naktinis, V., Turner, J., Fang, L., and O'Donnell, M. (1995) J. Biol. Chem. 270, 13348-13357). Until now, it has been unclear which DnaX protein, tau or gamma, in holoenzyme binds the auxiliary subunits delta, delta', chi,and psi. Treatment of purified holoenzyme with the homobifunctional cross-linker bis(sulfosuccinimidyl)suberate produces covalently cross-linked gamma-delta' and gamma-psi complexes identified by Western blot analysis. Immunodetection of cross-linked species with anti-delta' and anti-psi antibodies revealed that no tau-delta' or tau-psi cross-links had formed, suggesting that the delta' and psi subunits reside only on gamma within holoenzyme.  相似文献   

8.
1. Radioactive N,N'-dicyclohexyl carbodiimide (DCCD) is bound as effectively to the N, N'-dicyclohexyl carbodiimide- and oligomycin-sensitive ATPase complex in submitochondrial particles of normal rat liver as to the similar but partially N,N'-dicyclohexyl carbodiimide- and oligomycin-insensitive complex of thiamphenicol-treated rats. The latter complex is deficient in 3 subunits (subunit 6, 7 and 10). 2. Radioactive N,N'-dicyclohexyl carbodiimide is exclusively bound to the subunits present in the bands 8 and 11 of SDS-PAA gels of the purified ATPase complex. These subunits, most likely the dimer and monomer of the N,N'-dicyclohexyl carbodiimide-binding protein, are products of the cytoplasmic protein synthesis. 3. The results together indicate that the N,N'-dicyclohexyl carbodiimide-insensitivity of the ATPase complex formed during in vitro inhibition of mitochondrial protein synthesis, is not caused by a lack of inhibitor binding protein. The same holds for the oligomycin-insensitivity.  相似文献   

9.
J T Gasser  M P Chiesi  E Carafoli 《Biochemistry》1986,25(23):7615-7623
Phospholamban (PLB) from cardiac sarcoplasmic reticulum (SR) was phosphorylated under various conditions by the adenosine cyclic 3',5'-phosphate (cAMP)-dependent and/or the calmodulin-dependent protein kinase. The small shifts in apparent molecular weight resulting from the incorporation of Pi groups in the PLB complexes were analyzed by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In parallel experiments, PLB was dissociated into its subunits and analyzed by using a newly developed isoelectric focusing system. The pI values of the PLB subunits phosphorylated by the cAMP- or calmodulin-dependent kinase were 6.2 and 6.4, respectively. Double phosphorylation of the same subunit resulted in an acidic shift of the pI to 5.2. The combined analysis of the behavior of the PLB complex and of its subunits has greatly simplified the interpretation of the complex phosphorylation pattern and has led to the following conclusions: The PLB complex is composed of five probably identical subunits, each of them containing a distinct phosphorylation site for the calmodulin- and the cAMP-dependent kinase. The population of PLB interacting with the endogenous calmodulin-dependent kinase cannot be phosphorylated by the cAMP-dependent kinase unless previously phosphorylated in the presence of calmodulin. It was also observed that after maximal phosphorylation of PLB in the presence of very large amounts of the cAMP-dependent protein kinase, the Ca2+ pumping rate of the cardiac SR ATPase is stimulated up to 5-fold, i.e., a level of a stimulation which exceeds considerably the values so far reported in the literature.  相似文献   

10.
Biochemical characterization of the yeast vacuolar H(+)-ATPase   总被引:15,自引:0,他引:15  
The yeast vacuolar proton-translocating ATPase was isolated by two different methods. A previously reported purification of the enzyme (Uchida, E., Ohsumi, Y., and Anraku, Y. (1985) J. Biol. Chem. 260, 1090-1095) was repeated. This procedure consisted of isolation of vacuoles, solubilization with the zwitterionic detergent ZW3-14, and glycerol gradient centrifugation of the solubilized vacuoles. The fraction with the highest specific activity (11 mumol of ATP hydrolyzed mg-1 min-1) included eight polypeptides of apparent molecular masses of 100, 69, 60, 42, 36, 32, 27, and 17 kDa, suggesting that the enzyme may be more complex than the three-subunit composition proposed from the original purification. The 69-kDa polypeptide was recognized by antisera against the catalytic subunits of two other vacuolar ATPases and labeled with the ATP analog 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, indicating that it contains all or part of the catalytic site. A monoclonal antibody was prepared against this subunit. Under nondenaturing conditions, the antibody immunoprecipitated eight polypeptides, of the same molecular masses as those seen in the glycerol gradient fraction, from solubilized vacuolar vesicles. All eight of these polypeptides are therefore good candidates for being genuine subunits of the enzyme. The structure and function of the yeast vacuolar H+-ATPase were further characterized by examining the inhibition of ATPase activity by KNO3. In the presence of 5 mM MgATP, 100 mM KNO3 inhibited 71% of the ATPase activity of vacuolar vesicles, and the 69- and 60-kDa subunits (and possibly the 42-kDa subunit) were removed from the vacuolar membrane to a similar extent. At concentrations of less than 200 mM KNO3, the stripping of the ATPase subunits and the inhibition of ATPase activity were dependent on the presence of MgATP, suggesting that this is a conformation-specific disassembly of the enzyme. The yeast vacuolar H+-ATPase is a multisubunit enzyme, consisting of a combination of peripheral and integral membrane subunits. Its structure and subunit composition are very similar to other vacuolar ATPase, and it shares some characteristics with the F1F0-ATPases.  相似文献   

11.
The clathrin-coated vesicle proton-translocating complex is composed of a maximum of eight major polypeptides. Of these potential subunits, only the 17-kDa component, which is a proton pore, has been defined functionally (Sun, S.Z., Xie, X. S., and Stone, D. K. (1987) J. Biol. Chem. 262, 14790-14794). ATPase-and proton-pumping activities of the 200-fold purified proton-translocating complex are supported by Mg2+, whereas Ca2+ will only activate ATP hydrolysis. Like Mg2+-activated ATPase activity, Ca2+-supported ATP hydrolysis is inhibited by N-ethylmaleimide, NO3-, and an inhibitory antibody and is stimulated by Cl- and phosphatidylserine. Thus, Ca2+ prevents coupling of ATPase activity to vectoral proton movement, and Ca2+-activated ATPase activity is a partial reaction useful for analyzing the subunit structure required for ATP hydrolysis. The 530-kDa holoenzyme was dissociated with 3 M urea and subcomplexes, and isolated subunits were partially resolved by glycerol gradient centrifugation. No combination of these components yielded Mg2+-activated ATPase or proton pumping. Ca2+-activated ATP hydrolysis was not catalyzed by a subcomplex containing the 70- and 58-kDa subunits but was restored by recombination of the 70-, 58-, 40-, and 33-kDa polypeptides, indicating that these are subunits of the clathrin-coated vesicle proton pump which are necessary for ATP hydrolysis.  相似文献   

12.
The plant vacuole is acidified by a complex multimeric enzyme, the vacuole-type H+-ATPase (V-ATPase). The initial association of ATPase subunits on membranes was studied using an in vitro assembly assay. The V-ATPase assembled onto microsomes when V-ATPase subunits were supplied. However, when the A or B subunit or the proteolipid were supplied individually, only the proteolipid associated with membranes. By using poly(A+) RNA depleted in the B subunit and proteolipid subunit mRNA, we demonstrated A subunit association with membranes at substoichiometric amounts of the B subunit or the 16-kD proteolipid. These data suggest that poly(A+) RNA-encoded proteins are required to catalyze the A subunit membrane assembly. Initial events were further studied by in vivo protein labeling. Consistent with a temporal ordering of V-ATPase assembly, membranes contained only the A subunit at early times; at later times both the A and B subunits were found on the membranes. A large-mass ATPase complex was not efficiently formed in the absence of membranes. Together, these data support a model whereby the A subunit is first assembled onto the membrane, followed by the B subunit.  相似文献   

13.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit.  相似文献   

14.
Escherichia coli chaperonin GroEL consists of two stacked rings of seven identical subunits each. Accompanying binding of ATP and GroES to one ring of GroEL, that ring undergoes a large en bloc domain movement, in which the apical domain twists upward and outward. A mutant GroEL(AEX) (C138S,C458S,C519S,D83C,K327C) in the oxidized form is locked in a closed conformation by an interdomain disulfide cross-link and cannot hydrolyze ATP (Murai, N., Makino, Y., and Yoshida, M. (1996) J. Biol. Chem. 271, 28229-28234). By reconstitution of GroEL complex from subunits of both wild-type GroEL and oxidized GroEL(AEX), hybrid GroEL complexes containing various numbers of oxidized GroEL(AEX) subunits were prepared. ATPase activity of the hybrid GroEL containing one or two oxidized GroEL(AEX) subunits per ring was about 70% higher than that of wild-type GroEL. Based on the detailed analysis of the ATPase activity, we concluded that inter-ring negative cooperativity was lost in the hybrid GroEL, indicating that synchronized opening of the subunits in one ring is necessary for the negative cooperativity. Indeed, hybrid GroEL complex reconstituted from subunits of wild-type and GroEL mutant (D398A), which is ATPase-deficient but can undergo domain opening motion, retained the negative cooperativity of ATPase. In contrast, the ability of GroEL to assist protein folding was impaired by the presence of a single oxidized GroEL(AEX) subunit in a ring. Taken together, cooperative conformational transitions in GroEL rings ensure the functional communication between the two rings of GroEL.  相似文献   

15.
Several structural and functional properties of the covalent complex, formed upon cross-linking of the myosin heads (S-1) to F-actin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, were characterized. The elevated Mg2+-ATPase activity was measured during a 1-month storage of the complex under various conditions. In aqueous medium it showed a rapid time-dependent decrease but it was significantly more stable in the presence of 50% ethylene glycol at -20 degrees C. The ATPase loss most likely reflects a progressive conformational change within the S-1 ATPase site resulting from its greater exposure to the medium, induced by the permanently bound F-actin. The covalent acto-S1 complex was submitted to depolymerization-repolymerization experiments using different depolymerizing agents (0.6 M KI; 4.7 M NH4Cl; low-ionic-strength solution). The depolymerization led to an immediate loss of the enhanced Mg2+-ATPase activity; this activity was almost entirely recovered upon repolymerization of the complex. The protein material formed upon depolymerization of the covalent acto-S1 was analyzed by gel chromatography, gel electrophoresis, analytical ultracentrifugation and electron microscopy. It comprised mainly small-sized actin oligomers associated with the covalently bound S-1 and only a limited amount of free G-actin. The results illustrate the relationships between the filamentous state of actin and its ability to stimulate the Mg2+-ATPase activity of S-1. They also indicate that the binding of S-1 to F-actin is transmitted to several neighbouring actin subunits and strengthens the interactions between actin monomers. Acto-S1 cross-linked complexes were prepared in the presence of tropomyosin and the tropomyosin-troponin system. Under the conditions employed, the regulatory proteins were not cross-linked to actin or S-1 and did not affect the extent or the pattern of S-1 cross-linking to F-actin. Measurements of the elevated Mg2+-ATPase activity of the cross-linked preparations revealed that tropomyosin and the tropomyosin-troponin complex, in the absence of Ca2+, inhibit ATP hydrolysis; the extent of ATPase inhibition (up to 50%) was dependent on the amount of covalently bound S-1, being larger at low level of S-1 cross-linking; the addition of Ca2+ restored the ATPase activity to the control value. The data provide direct evidence that the regulatory proteins can modulate directly the kinetics of ATP hydrolysis by the covalent acto-S1 complex as has earlier been suggested for the reversible complex [Chalovich, J. M. and Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Only beta-beta cross-links form when the alpha(3)(betaE(395)C)(3)gammaK(36)C (MF(1) residue numbers) double mutant subcomplex of TF(1), the F(1)-ATPase from the thermophilic Bacillus PS3, is slowly inactivated with CuCl(2) in the presence or absence of MgATP. The same slow rate of inactivation and extent of beta-beta cross-linking occur upon treatment of the alpha(3)(betaE(395)C)(3)gamma single mutant subcomplex with CuCl(2) under the same conditions. In contrast, the alpha(3)(betaE(395)C)(3)gammaR(33)C and alpha(3)(betaE(395)C)(3)gammaR(75)C double mutant subcomplexes of TF(1) are rapidly inactivated by CuCl(2) under the same conditions that is accompanied by complete beta-gamma cross-linking. The ATPase activity of each mutant enzyme containing the betaE(395)C substitution is stimulated to a much greater extent by the nonionic detergent lauryldimethylamine oxide (LDAO) than wild-type enzyme, whereas the ATPase activities of the gammaR(33)C, gammaK(36)C, and gammaR(75)C single mutants are stimulated to about the same extent as wild-type enzyme by LDAO. This indicates that the E(395)C substitution in the (394)DELSEED(400) segment of beta subunits increases propensity of the enzyme to entrap inhibitory MgADP in a catalytic site during turnover. These results are discussed in perspective with (i) the ionic track predicted from molecular dynamics simulations to operate during energy-driven ATP synthesis by MF(1), the F(1)-ATPase from bovine heart mitochondria [Ma, J., Flynn, T. C., Cui, Q., Leslie, A. G. W., Walker, J. E., and Karplus, M. (2002) Structure 10, 921-931]; and (ii) the possibility that the betaE(395)C substitution might induce a global effect that alters affinity of noncatalytic sites for nucleotides or alters communication between noncatalytic sites and catalytic sites during ATP hydrolysis.  相似文献   

17.
1. The naturally occurring ATPase (adenosine triphosphatase)-inhibitor protein, from bovine heart mitochondria, was obtained as a single pure protein. It was not identical with any of the five subunits (alpha-epsilon) of the isolated ATPase, and appeared to be a single polypeptide chain. 2. The inhibitor combined with the ATPase in a 1:1 molar ratio, producing a completely inhibited ATPase molecule. The affinity of the ATPase for its inhibitor is high; the K(d) is of the order of 10(-8)m. 3. The enthalpy of the ATPase-inhibitor complex-formation is positive, the value of K(d) decreasing as the temperature is raised. This suggests that the forces involved are largely hydrophobic in nature. 4. Hydrolysis of a nucleoside triphosphate promoted formation of the ATPase-inhibitor complex, although the equilibrium position was almost unaffected by the rate of hydrolysis. At low salt concentration, less than 200 turnovers of the ATPase suffice for the ATPase to combine with the inhibitor protein. At higher salt concentrations, a larger number of turnovers is required. It is suggested that the inhibitor binds to a form of the ATPase that is produced transiently during hydrolysis. 5. In the presence of 75mm-K(2)SO(4), the rates of association and dissociation are slow enough to allow their kinetics to be studied. Association is first-order in inhibitor concentration, but fractional order in ATPase concentration. Dissociation is first-order in ATPase-inhibitor complex concentration. The temperature coefficients of the ;on' and ;off' processes were also measured. 6. A simple kinetic model for the ATPase-inhibitor interaction is proposed that can be extended to take into account release of inhibitor protein under energized conditions on the membrane. 7. The isolated ATPase is inhibited by preincubation with Mg(2+), reversible by subsequent addition of EDTA, and by ADP, reversible by subsequent addition of ATP. These effects are not found on the membrane-bound ATPase. The mechanism of these effects is discussed.  相似文献   

18.
A chimeric plasmid carrying the structural gene (ATP2) for the mitochondrial ATPase beta subunit of Saccharomyces cerevisiae has been used to complement a mutant of Schizosaccharomyces pombe lacking the beta subunit (Boutry, M., and Goffeau, A. (1982) Eur. J. Biochem. 125, 471-477). Transformation with ATP2 restored the growth rate of S. pombe mutant on glycerol as well as the mitochondrial ATPase and 32Pi-ATP exchange activities to approximately 20% of the parental strain. Mitochondria prepared from the transformant contained a normal amount of a hybrid F1-ATPase consisting of the S. cerevisiae beta subunit assembled with the remaining subunits of the S. pombe ATPase complex. The presence of the S. cerevisiae beta subunit in the S. pombe ATPase complex conferred a sensitivity to the energy transfer inhibitors citreoviridin and oligomycin which was like that of the intact S. cerevisiae enzyme. The S. cerevisiae beta subunit assembled into the hybrid ATPase complex was the same size as the mature subunit in S. cerevisiae. These data indicate that the mechanism of mitochondrial import and the assembly of the cytoplasmically synthesized subunits is similar or identical in these evolutionary divergent yeasts. In addition, this study provides a new approach for the construction of hybrid mitochondrial ATPase complexes which can be used to examine the function of selected subunits in energy transduction.  相似文献   

19.
A complex of the alpha- and beta-subunits of thermophilic ATP synthase showed about 25% of the ATPase activity of the alpha beta gamma complex. The alpha 3 beta 3 hexamer structure was analyzed by sedimentation (11.2 S) and gel filtration (310 kDa). Dilution of the alpha beta complex caused dissociation of the complex and rapid loss of ATPase activity which was restored by addition of the gamma-subunit. A previous method using urea for isolating the subunits resulted in an alpha beta complex with lower activity than that prepared by over-expression of the genes. The alpha beta-ATP complex was formed from the alpha beta complex, ADP and Pi in the presence of dimethyl sulfoxide.  相似文献   

20.
The three-dimensional structure of the Manduca sexta midgut V(1) ATPase has been determined at 3.2 nm resolution from electron micrographs of negatively stained specimens. The V(1) complex has a barrel-like structure 11 nm in height and 13.5 nm in diameter. It is hexagonal in the top view, whereas in the side view, the six large subunits A and B are interdigitated for most of their length (9 nm). The topology and importance of the individual subunits of the V(1) complex have been explored by protease digestion, resistance to chaotropic agents, MALDI-TOF mass spectrometry, and CuCl(2)-induced disulfide formation. Treatment of V(1) with trypsin or chaotropic iodide resulted in a rapid cleavage or release of subunit D from the enzyme, indicating that this subunit is exposed in the complex. Trypsin cleavage of V(1) decreased the ATPase activity with a time course that was in line with the cleavage of subunits B, C, G, and F. When CuCl(2) was added to V(1) in the presence of CaADP, the cross-linked products A-E-F and B-H were generated. In experiments where CuCl(2) was added after preincubation of CaATP, the cross-linked products E-F and E-G were formed. These changes in cross-linking of subunit E to near-neighbor subunits support the hypothesis that these are nucleotide-dependent conformational changes of the E subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号