首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coevolutionary interactions between species are thought to be an important cause of evolutionary diversification. Despite this general belief, little theoretical basis exists for distinguishing between the types of interactions that promote diversification and those types that have no effect or that even restrict it. Using analytical models and simulations of phenotypic evolution across a metapopulation, we show that coevolutionary interactions promote diversification when they impose a cost of phenotype matching, as is the case for competition or host-parasite antagonism. In contrast, classical coevolutionary arms races have no tendency to promote or inhibit diversification, and mutualistic interactions actually restrict diversification. Together with the results of recent phylogenetic and ecological studies, these results suggest that the causes of diversification in many coevolutionary systems may require reassessment.  相似文献   

2.
Clonal traits such as clonal integration and storage functions of rhizomes or stolons may provide clonal plants with additional advantages against grazing over non-clonal plants. Here, we hypothesize that clonal species have a larger capacity for compensatory growth than co-occurring non-clonal species. In inland dunes in northern China, individual plants of two rhizomatous clonal species (Bromus ircutensis and Psammochloa villosa) and two non-clonal ones (Artemisia intramongolica and Astragalus melilotoides) were subjected to 0% (control), 50% (moderate) and 90% (heavy) shoot removal. Compared with control, heavy clipping greatly increased the relative growth rate in Bromus and Psammochloa, but decreased that in Artemisia and Astragalus. Heavy clipping affected above-ground dry weight and the number of modules more negatively in Artemisia and Astragalus than in Bromus and Psammochloa. These results support the hypothesis and suggest that clonal species are more tolerant to grazing than co-occurring non-clonal species in inland dunes.  相似文献   

3.
Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta‐analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above‐mentioned global environmental change components. We found that elevated temperature and CO2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: = 0.051; increased precipitation: = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (= 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO2 enrichment, may further increase the spread of invasive plants in the future.  相似文献   

4.
Experimental and theoretical studies have highlighted the impact of gene flow on the probability of evolutionary rescue in structured habitats. Mathematical modeling and simulations of evolutionary rescue in spatially or otherwise structured populations showed that intermediate migration rates can often maximize the probability of rescue in gradually or abruptly deteriorating habitats. These theoretical results corroborate the positive effect of gene flow on evolutionary rescue that has been identified in experimental yeast populations. The observations that gene flow can facilitate adaptation are in seeming conflict with traditional population genetics results that show that gene flow usually hampers (local) adaptation. Identifying conditions for when gene flow facilitates survival chances of populations rather than reducing them remains a key unresolved theoretical question. We here present a simple analytically tractable model for evolutionary rescue in a two-deme model with gene flow. Our main result is a simple condition for when migration facilitates evolutionary rescue, as opposed as no migration. We further investigate the roles of asymmetries in gene flow and/or carrying capacities, and the effects of density regulation and local growth rates on evolutionary rescue.  相似文献   

5.
6.
The ability of environmental variation to affect species coexistence is much studied, yet environmental variation is not always important. I present an approximate calculation for the long-run growth rate of a species in the presence of spatially and temporally correlated environmental variation. I then perform a factorial numerical experiment, varying the mean seed dispersal distances, competition radii, and overwinter seed survival probabilities for two competing species for an array of variational regimes, noting the effects on their long-run growth rates. I find, first, that purely spatial variation has a greater capacity for influence than variation with a temporal component. Second, spatiotemporal variation can promote coexistence as strongly as purely temporal variation or more so, given the right species traits. Third, if the environmental variation has a spatial component, traits which enable species to become spatially segregated promote coexistence most strongly. That is, it is the possibility of spatial segregation which gives spatial variation its large potential to promote coexistence.
Robin E. SnyderEmail:
  相似文献   

7.
8.
9.
Murray BG 《Annals of botany》2005,95(1):119-125
AIMS: To examine what possible role intraspecific DNA C-value variation may play in plant taxonomy. SCOPE: Although many of the original examples of intraspecific C-value variation have been shown to be the result of experimental variation, new examples using the appropriate standards and controls continue to be published. The evidence that intraspecific C-value variation alters phenotypes can be equivocal, and detailed studies are needed to clarify any possible relationship. However, populations within species have been shown to have varying DNA amounts that can be correlated with eco-geographic variables, suggesting that the variation is adaptive and that these may be examples of incipient speciation. CONCLUSIONS: Where intraspecific C-value variation appears most significant for taxonomy is as an indicator of taxonomic heterogeneity, pointing to the need for a re-evaluation of the delimitation of the species in question. There is also the need to test whether intraspecific C-value variants produce fertile F(1) hybrids or not, as this would be a good indication of whether they belong in the same biological species.  相似文献   

10.
This paper examines the efficiency of the incongruence length difference test (ILD) proposed by Farris et al. (1994) for assessing the incongruence between sets of characters. DNA sequences were simulated under various evolutionary conditions: (1) following symmetric or asymmetric trees, (2) with various mutation rates, (3) with constant or variable evolutionary rates along the branches, and (4) with different among-site substitution rates. We first compared two sets of sequences generated along the same tree and under the same evolutionary conditions. The probability of a Type-I error (wrongly rejecting the true hypothesis of congruence) was substantially below the standard 5% level of significance given by the ILD test; this finding indicates that the choice of the 5% level is rather conservative in this case. We then compared two data sets, still generated along the same tree, but under different evolutionary conditions (constant vs. variable evolutionary rate, homogeneity vs. heterogeneity rate of substitution). Under these conditions, the probability of rejecting the true hypothesis of congruence was greater than the 5% given by the ILD test and increased with the number of sites and the degree to which the tree was asymmetric. Finally, the comparison of the two data sets, simulated under contrasting tree structures (symmetric vs. asymmetric) but under the same evolutionary conditions, led us to reject the hypothesis of congruence, albeit weakly, particularly when the number of informative sites was low and among-site substitution rate heterogeneous. We conclude that the ILD test has only limited power to detect incongruence caused by differences in the evolutionary conditions or in the tree topology, except when numerous characters are present and the substitution rate is homogeneous from site to site.  相似文献   

11.
For the general replicator dynamics with regular relative advantage functions (having non-singular Jacobian and symmetrized Jacobian), it will be shown that the variance of marginal fitness of the replicators strictly decreases along each trajectory of the replicator dynamics near an interior rest point if and only if this rest point is a regular evolutionarily stable state.  相似文献   

12.
Reproductive interference is interspecific sexual interactions that are costly to at least one species involved. Although many studies have reported a substantial fitness cost associated with reproductive interference, suggesting its ecological significance, others have not observed reproductive interference in study species. Reproductive interference that incurs a large fitness cost is more likely to occur during secondary contacts than between long-coexisting species. I first explain the rationale underlying this prediction using existing literature. Next, I present a conceptual framework to classify pairs of interacting species into one of four states, defined by the ecological and evolutionary stabilities of the species pairs. I discuss how the stability states of species pairs are likely to change over time, along with changes in the demographic and evolutionary role of reproductive interference. I then perform literature survey to test the prediction that reproductive interference should be more prevalent in secondary contact. Finally, I discuss the implications of the proposed conceptual framework and literature survey result.  相似文献   

13.
《Trends in microbiology》2023,31(9):894-902
Plant microbiota can greatly impact plant growth, defense, and health in different environments. Thus, it might be evolutionarily beneficial for plants to be able to control processes related to microbiota assembly. Dioecious plant species display sexual dimorphism in morphology, physiology, and immunity. These differences imply that male and female individuals might differently regulate their microbiota, but the role of sex in microbiota assembly has been largely neglected so far. Here, we introduce the mechanism of how sex controls microbiota in plants analogically to the sex regulation of gut microbiota in animals, in particular in humans. We argue that plant sex imposes selective pressure on filtering and constructing microbiota in the rhizosphere, phyllosphere, and endosphere along the soil–plant continuum. Since male plants are more resistant than female plants to environmental stresses, we suggest that a male host forms more stable and resistant plant microbiota that cooperate more effectively with the host to resist stresses. Male and female plants can distinguish whether a plant is of the same or different sex, and males can alleviate stress-caused damage in females. The impact of a male host on microbiota would protect female plants from unfavorable environments.  相似文献   

14.
Introduced exotic species can dominate communities and replace native species that should be better adapted to their local environment, a paradox that is usually explained by the absence of natural enemies and by habitat alteration resulting from anthropogenic disturbance. Additionally, introduced species can enhance their invasion success and impact on native species by modifying selection pressures in their new environment through ecosystem engineering. We analyse a simple dynamic model of indirect competition for habitat between a non-engineering resident species and an engineering exotic species. The conditions for invasion and competitive exclusion of the resident by the exotic species and the range of dynamic outcomes suggested by the model are determined by the form of density dependence. We give simple criteria for the success of the invading species on dimensionless quantities involving rates of ecosystem engineering and of habitat degradation. The model's predictions offer an additional explanation for a range of invasion dynamics reported in the literature, including lag times between introduction and establishment. One intriguing result is that a series of failed invasions may successively reduce environmental resistance to subsequent invasion, through a cumulative effect of habitat transformation. More work is needed to determine the frequency and conditions in which engineering is required for successful establishment, and whether highly-successful (or high-impact) invaders are more likely to possess ecosystem engineering traits.  相似文献   

15.
16.
This paper develops a set of simplified dynamical models with which to explore the conditions under which division of labor leads to optimized system output, as measured by the rate of production of a given product. We consider two models: in the first model, we consider the flow of some resource into a compartment, and the conversion of this resource into some product. In the second model, we consider the growth of autoreplicating systems. In this case, we divide the replication and metabolic tasks among different agents. The general features that emerge from our models is that division of labor is favored when the resource to agent ratio is at intermediate values, and when the time cost associated with transporting intermediate products is small compared to characteristic process times. The results of our model are consistent with the behavior of the cellular slime mold Dictyostelium discodeum, which switches from a single-celled to a multi-celled state when resources become limited. We also argue that division of labor in the context of our replication model suggests an evolutionary basis for the emergence of the stem-cell-based tissue architecture in complex organisms. Finally, the results of this paper may be useful for understanding how, in an economic context, firm productivity is maximized at intermediate firm sizes.  相似文献   

17.
Many reasons for the emergence of bipedalism have been proposed, including postural arguments which highlight that a sub-optimal form of bipedalism ("shuffling") might have been used by protohominids to cover short distances between resources that require bipedal standing. Bipedal shuffling may have been employed because it avoids the cost of raising the trunk from the quadrupedal orientation, which we assume is the habitual locomotor stance of protohominids. To date, these postural proposals have not been analytically assessed, a lack we rectify herein. Our model seeks to specify a threshold distance, below which bipedal shuffling uses less energy than quadrupedalism. Parameters for the model include the mechanical cost of transport, the ratio of bipedal to quadrupedal cost, and the cost associated with raising the trunk. We found that, using reasonable model parameters, open distances of approximately 9-16 m support the use of bipedal shuffling. Protohominids may have used shuffling as an energetically effective way to traverse between resource patches.  相似文献   

18.
Trait selection in flowering plants: how does sexual selection contribute?   总被引:2,自引:1,他引:1  
By highlighting and merging the frameworks of sexual selectionenvisioned by Arnold (1994) and Murphy (1998), we discuss howsexual selection can occur in plants even though individualsdo not directly interact. We review studies on traits that influencepollen export and receipt in a variety of hermaphroditic andgynodioecious plants with the underlying premise that pollinationdynamics influences mate acquisition. Most of the studies reviewedfound that phenotypes that enhance pollen export are in harmonywith those that enhance pollen receipt suggesting that in manycases pollinator visitation rates limit both male and femalefunction. In contrast, fewer traits were under opposing selection;but when they were, the traits most often were associated withenhancing the specific aspects of a given sex function. Ourreview helps clarify and illustrate why sexual selection canbe a component of trait evolution in hermaphrodite plants.  相似文献   

19.
Excessive flavour in lamb meat is undesirable for consumers and can prompt purchase resistance. Volatile indoles responsible for off-flavours accumulate more in the fat of lambs on pasture than on grain and are enhanced when lambs graze alfalfa. Here, we investigated whether barley supplementation of lambs grazing alfalfa influences meat sensory quality. Using three groups of 12 male Romane lambs, we compared three feeding regimes: alfalfa grazing (AG), alfalfa grazing + daily supplementation with barley (29 g/kg live weight0.75, AGS) and stall feeding with concentrate and hay (SF). As some of the compounds involved in meat sensory traits may act as dietary biomarkers, we also investigated potential implications for meat authentication. Although barley represented 38% of the diet in AGS lambs, it did not offer any advantage for animal average daily gain or parasitism level. Animal performance, carcass weight and fatness did not differ between feeding regimes. Dorsal fat firmness tended to be greater in AG than AGS and greater in AGS than SF. Skatole and indole concentrations in perirenal and dorsal fat were lower in SF lambs than in AG and AGS lambs (P<0.01 to P<0.0001), but did not differ between AG and AGS lambs. Yellowness, chroma and hue angle of perirenal fat were lower in SF lambs than in AG and AGS lambs (P<0.001), but did not differ between AG and AGS lambs. Absolute value of the mean integral for both perirenal fat and subcutaneous caudal fat (AVMIPF and AVMISC), quantifying the intensity of light absorption by carotenoids in perirenal and subcutaneous caudal fat, respectively, were lower in SF lambs than in AG and AGS lambs (P<0.0001 for both comparisons), but did not differ between AG and AGS lambs. Meat colour was unaffected by the treatment. We confirm that lambs grazing alfalfa accumulate high levels of volatile indoles in their fat, but we show that barley supplementation to lambs grazing alfalfa is not effective in reducing fat volatile indoles concentration and excessive odour/flavour in the meat. We also confirm that both perirenal fat skatole concentration and AVMIPF are of interest for discriminating lambs that grazed alfalfa from lambs that were stall-fed, and we show that they are not effective for discriminating supplemented from non-supplemented grazing lambs.  相似文献   

20.
Livestock grazing represents an important human disturbance for vegetation worldwide. We analysed the intraspecific differences in mean trait values between different grazing regimes (ungrazed and grazed) and explored whether these differences are consistent across species in a sub‐humid mountain ecosystem in Central Argentina. We selected 14 species of eight different families, co‐occurring in both regimes and comprising herbaceous (grasses and forbs) and woody (shrubs and trees) plants. For each species and grazing regime we measured 12 traits related to plant size, carbon fixation and water use. We found that plants in the grazed regime had consistently smaller leaves and shorter stature and internodal length than plants of the same species under the ungrazed regime. For the remaining traits the responses were species‐specific. Dry matter content, leaf tensile strength and minimum leaf water potential (Ψleaf) showed contrasting responses to grazing. Specific leaf area, wood density and potential water content of wood showed almost no significant responses except for very few species. Neither leaf area per shoot mass nor leaf area per sapwood area differed significantly between grazing regimes. Our study suggested that the intraspecific variation found for the size‐related traits would allow species to respond to grazing without modifying markedly other structural traits, a plastic response that might increase the probability of species success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号