首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
许多动物的叫声频率呈现性二态现象。蝙蝠夜间活动,主要利用声音信号导航空间、追踪猎物、传递交流信息。本研究选择成体菲菊头蝠作为研究对象,检验回声定位声波频率性二态是否有利于性别识别。研究发现,菲菊头蝠回声定位声波频率参数具有显著性别差异。播放白噪音、雄性回声定位声波及雌性回声定位声波期间,实验个体的反应叫声数量依次递减。播放白噪音、雌性回声定位声波及雄性回声定位声波后,实验个体的反应叫声数量依次递增。白噪音诱导反应叫声强度高于回声定位声波诱导反应叫声强度。研究结果表明,菲菊头蝠回声定位声波的频率参数编码发声者性别信息,有利于种群内部的性别识别。本研究暗示,回声定位声波可能在蝙蝠配偶选择中扮演一定作用。  相似文献   

2.
Bat echolocation is primarily used for orientation and foraging but also holds great potential for social communication. The communicative function of echolocation calls is still largely unstudied, especially in the wild. Eavesdropping on vocal signatures encoding social information in echolocation calls has not, to our knowledge, been studied in free-living bats so far. We analysed echolocation calls of the polygynous bat Saccopteryx bilineata and found pronounced vocal signatures encoding sex and individual identity. We showed experimentally that free-living males discriminate approaching male and female conspecifics solely based on their echolocation calls. Males always produced aggressive vocalizations when hearing male echolocation calls and courtship vocalizations when hearing female echolocation calls; hence, they responded with complex social vocalizations in the appropriate social context. Our study demonstrates that social information encoded in bat echolocation calls plays a crucial and hitherto underestimated role for eavesdropping conspecifics and thus facilitates social communication in a highly mobile nocturnal mammal.  相似文献   

3.
Auditory feedback from the animal''s own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.  相似文献   

4.
A phylogenetic approach was used to test three hypotheses regarding the evolution of diversity in the echolocation frequencies used by horseshoe bats (family Rhinolophidae, genus Rhinolophus): 1) Allotonic Frequency Hypothesis (high frequency echolocation in the Rhinolophidae resulted from coevolution with moth hearing); 2) Allometry Hypothesis (echolocation frequency is negatively scaled with body size and evolutionary changes in echolocation frequencies are correlated with changes in body size in the Rhinolophidae); and 3) Foraging Habitat Hypothesis (evolution of echolocation frequency is associated with changes in habitat type). Both discrete and continuous character sets were used for ancestral state reconstructions and for investigating patterns of evolution between frequency and body size, and frequency and habitat type. Contrary to the prediction of the Allotonic Frequency Hypothesis, echolocation frequency in the Rhinolophidae did not increase over time, which would be expected if moth hearing and bat echolocation frequency coevolved. The number of extant species that exhibit calls within moth hearing ranges was not significantly different from the number of species that echolocate outside of moth hearing range. There was also no correlation between changes in frequency and changes in habitat type as predicted by the Foraging Habitat Hypothesis. Instead, the evolution of echolocation frequency within the Rhinolophidae was correlated with changes in body size as predicted by the Allometry Hypothesis.  相似文献   

5.
The evolution of echolocation in swiftlets   总被引:1,自引:0,他引:1  
The abilities of some cave-nesting swiftlets to echolocate has traditionally been used to separate the genus Aerodramus , which includes echolocating species, from the genus Collocalia , thought to lack echolocation. Here we report the discovery of echolocation in a member of the latter genus, the pygmy swiftlet Collocalia troglodytes . We also present a well-supported molecular phylogeny for the swiftlets and their relatives based on DNA sequence data from two mitochondrial genes, which we use to reconstruct the evolution of echolocation. Our data provide strong evidence that the swiftlets are a monophyletic group. This monophyly plus the presence of echolocation in C. troglodytes indicate that either (1) echolocation evolved much earlier in the swiftlets than previously thought and has since been lost in most Collocalia taxa, or (2) this ability evolved independently in Aerodramus and Collocalia . Based on our results, echolocation can no longer be considered a useful character for distinguishing these two genera.  相似文献   

6.
We used playback presentations to free-flying bats of 3 species to assess the influence of echolocation call design and foraging strategy on the role of echolocation calls in communication. Near feeding sites over water, Myotis lucifugus and M. yumanensis responded positively only to echolocation calls of conspecifics. Near roosts, these bats did not respond before young of the year became volant, and after this responded to presentations of echolocation calls of similar and dissimilar design. At feeding sites Lasiurus borealis responded only to echolocation calls of conspecifics and particularly to “feeding buzzes”. While Myotis, particularly subadults, appear to use the echolocation calls of conspecifics to locate feeding sites, L. borealis appears to use the calls of a foraging neighbour attacking prey to identify opportunities for ‘stealing’ food.  相似文献   

7.
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.  相似文献   

8.
The echolocation rate and behavior of wild harbor porpoises were studied using a harbor porpoise click detector (POD) deployed close to the bottom at 40 m depth in Scottish waters, UK, April—June 2001. Echolocation variables were compared among four diel phases; morning, day, evening, and night. The echolocation encounter rate, the minimum interclick interval per train, and the proportion of echolocation click trains with a minimum interclick interval below 10 msec were all significantly higher at night than during the day. The variation in echolocation rate implies that porpoises increased their echolocation rate and/or visited the depth of the POD more often at night than during the day. Further, the changes in minimum interclick interval per train suggest that they used their echolocation for foraging or investigating objects at a close range to a higher extent, and acoustically explored the environment at greater distances at night than during the day.  相似文献   

9.
Ecological constraints often shape the echolocation pulses emitted by bat species. Consequently some (but not all) bats emit species-specific echolocation pulses. Because echolocation pulses are often intense and emitted at high rates, they are potential targets for eavesdropping by other bats. Echolocation pulses can also vary within species according to sex, body size, age, social group and geographic location. Whether these features can be recognised by other bats can only be determined reliably by playback experiments, which have shown that echolocation pulses do provide sufficient information for the identification of sex and individual in one species. Playbacks also show that bats can locate conspecifics and heterospecifics at foraging and roost sites by eavesdropping on echolocation pulses. Guilds of echolocating bat species often partition their use of pulse frequencies. Ecology, allometric scaling and phylogeny play roles here, but are not sufficient to explain this partitioning. Evidence is accumulating to support the hypothesis that frequency partitioning evolved to facilitate intraspecific communication. Acoustic character displacement occurs in at least one instance. Future research can relate genetic population structure to regional variation in echolocation pulse features and elucidate those acoustic features that most contribute to discrimination of individuals.  相似文献   

10.
V. A. Ryabov 《Biophysics》2014,59(1):135-147
Two-channel recording of acoustic signals from two quasi-stationary dolphins has previously suggested that the dolphin echolocation system is more complex than discussed earlier, and includes at least four sonars. In the present work, two-channel recording of signals, analysis and interpretation of their functions were continued in terms of physical acoustics, signal theory and echolocation. The results indicate that the echolocation system of dolphins involves four organs to produce probing signals of five different types, which implies different mechanisms of their processing by the dolphin hearing; its operation corresponds to as many as six varieties of sonar systems. The results are of importance for studying the echolocation system of Odontoceti and for improving sonars and radars.  相似文献   

11.
Flight and echolocation are key characters distinguishing most bats from other mammals.The number of ecolological niches for bats is limited by the concurent constraints of the mammalian physiology and reproductive system and the high cost of flight and echolocation. The recent discovery of a biomechanical coupling between echolocation and flight highlights the need to incorporate both chracters as parts of a single adaptive complex in future research on the ecology and evolution of bats.  相似文献   

12.
All organisms have specialized systems to sense their environment. Most bat species use echolocation for navigation and foraging, but which and how ecological factors shaped echolocation call diversity remains unclear for the most diverse clades, including the adaptive radiation of neotropical leaf‐nosed bats (Phyllostomidae). This is because phyllostomids emit low‐intensity echolocation calls and many inhabit dense forests, leading to low representation in acoustic surveys. We present a field‐collected, echolocation call dataset spanning 35 species and all phyllostomid dietary guilds. We analyze these data under a phylogenetic framework to test the hypothesis that echolocation call design and parameters are specialized for the acoustic demands of different diets, and investigate the contributions of phylogeny and body size to echolocation call diversity. We further link call parameters to dietary ecology by contrasting minimum detectable prey size estimates (MDPSE) across species. We find phylogeny and body size explain a substantial proportion of echolocation call parameter diversity, but most species can be correctly assigned to taxonomic (61%) or functional (77%) dietary guilds based on call parameters. This suggests a degree of acoustic ecological specialization, albeit with interspecific similarities in call structure. Theoretical MDPSE are greatest for omnivores and smallest for insectivores. Omnivores significantly differ from other dietary guilds in MDPSE when phylogeny is not considered, but there are no differences among taxonomic dietary guilds within a phylogenetic context. Similarly, predators of non‐mobile/non‐evasive prey and predators of mobile/evasive prey differ in estimated MDPSE when phylogeny is not considered. Phyllostomid echolocation call structure may be primarily specialized for overcoming acoustic challenges of foraging in dense habitats, and then secondarily specialized for the detection of food items according to functional dietary guilds. Our results give insight into the possible ecological mechanisms shaping the diversity of sensory systems, and their reciprocal influence on resource use.  相似文献   

13.
The echolocation calls of bats function in prey capture and navigation but are not commonly regarded as communicative signals. However, because bats' echolocation calls show patterns of variability, they may transmit information about a bat, such as its age, individual identity or sex. For echolocation calls to function in this manner, variation in calls must be reliably linked to the characteristics of the bat, as has been shown in a number of studies. However, few studies have asked whether bats respond to this variation. We tested whether female big brown bats can identify the sex of an unfamiliar bat from playbacks of its echolocation calls. Playback consisted of a 30-s preplayback period, a 60-s playback period of either male or female echolocation calls, and a 30-s postplayback period. In the playback and postplayback periods the vocalization rates of female bats changed significantly relative to the preplayback period depending on the sex of the playback stimulus, indicating that they could determine sex from the echolocation calls. These findings support the possibility that echolocation calls play a role in communication in big brown bats.  相似文献   

14.
Echolocating bats of the genus Rousettus produce click sonar signals, using their tongue (lingual echolocation). These signals are often considered rudimentary and are believed to enable only crude performance. However, the main argument supporting this belief, namely the click’s reported long duration, was recently shown to be an artifact. In fact, the sonar clicks of Rousettus bats are extremely short, ~50–100 μs, similar to dolphin vocalizations. Here, we present a comparison between the sonar systems of the ‘model species’ of laryngeal echolocation, the big brown bat (Eptesicus fuscus), and that of lingual echolocation, the Egyptian fruit bat (Rousettus aegyptiacus). We show experimentally that in tasks, such as accurate landing or detection of medium-sized objects, click-based echolocation enables performance similar to laryngeal echolocators. Further, we describe a sophisticated behavioral strategy for biosonar beam steering in clicking bats. Finally, theoretical analyses of the signal design—focusing on their autocorrelations and wideband ambiguity functions—predict that in some aspects, such as target ranging and Doppler-tolerance, click-based echolocation might outperform laryngeal echolocation. Therefore, we suggest that click-based echolocation in bats should be regarded as a viable echolocation strategy, which is in fact similar to the biosonar used by most echolocating animals, including whales and dolphins.  相似文献   

15.
Echolocation is energetically costly for resting bats, but previous experiments suggested echolocation to come at no costs for flying bats. Yet, previous studies did not investigate the relationship between echolocation, flight speed, aerial manoeuvres and metabolism. We re-evaluated the 'no-cost' hypothesis, by quantifying the echolocation pulse rate, the number of aerial manoeuvres (landings and U-turns), and the costs of transport in the 5-g insectivorous bat Rhogeessa io (Vespertilionidae). On average, bats (n = 15) travelled at 1.76 ± 0.36 m s?1 and performed 11.2 ± 6.1 U-turns and 2.8 ± 2.9 ground landings when flying in an octagonal flight cage. Bats made more U-turns with decreasing wing loading (body weight divided by wing area). At flight, bats emitted 19.7 ± 2.7 echolocation pulses s?1 (range 15.3-25.8 pulses s?1), and metabolic rate averaged 2.84 ± 0.95 ml CO? min?1, which was more than 16 times higher than at rest. Bats did not echolocate while not engaged in flight. Costs of transport were not related to the rate of echolocation pulse emission or the number of U-turns, but increased with increasing number of landings; probably as a consequence of slower travel speed when staying briefly on ground. Metabolic power of flight was lower than predicted for R. io under the assumption that energetic costs of echolocation call production is additive to the aerodynamic costs of flight. Results of our experiment are consistent with the notion that echolocation does not add large energetic costs to the aerodynamic power requirements of flight in bats.  相似文献   

16.
The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade‐offs. Here, we investigate whether a trade‐off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three‐dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade‐off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency‐specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study.  相似文献   

17.
Bat echolocation calls: adaptation and convergent evolution   总被引:4,自引:0,他引:4  
Bat echolocation calls provide remarkable examples of 'good design' through evolution by natural selection. Theory developed from acoustics and sonar engineering permits a strong predictive basis for understanding echolocation performance. Call features, such as frequency, bandwidth, duration and pulse interval are all related to ecological niche. Recent technological breakthroughs have aided our understanding of adaptive aspects of call design in free-living bats. Stereo videogrammetry, laser scanning of habitat features and acoustic flight path tracking permit reconstruction of the flight paths of echolocating bats relative to obstacles and prey in nature. These methods show that echolocation calls are among the most intense airborne vocalizations produced by animals. Acoustic tracking has clarified how and why bats vary call structure in relation to flight speed. Bats using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localized accurately. Recent phylogenetic analyses based on gene sequences show that particular types of echolocation signals have evolved independently in several lineages of bats. Call design is often influenced more by perceptual challenges imposed by the environment than by phylogeny, and provides excellent examples of convergent evolution. Now that whole genome sequences of bats are imminent, understanding the functional genomics of echolocation will become a major challenge.  相似文献   

18.
Many blind people rely on echoes from self-produced sounds to assess their environment. It has been shown that human subjects can use echolocation for directional localization and orientation in a room, but echo-acoustic distance perception - e.g. to determine one''s position in a room - has received little scientific attention, and systematic studies on the influence of additional early reflections and exploratory head movements are lacking. This study investigates echo-acoustic distance discrimination in virtual echo-acoustic space, using the impulse responses of a real corridor. Six blindfolded sighted subjects and a blind echolocation expert had to discriminate between two positions in the virtual corridor, which differed by their distance to the front wall, but not to the lateral walls. To solve this task, participants evaluated echoes that were generated in real time from self-produced vocalizations. Across experimental conditions, we systematically varied the restrictions for head rotations, the subjects'' orientation in virtual space and the reference position. Three key results were observed. First, all participants successfully solved the task with discrimination thresholds below 1 m for all reference distances (0.75–4 m). Performance was best for the smallest reference distance of 0.75 m, with thresholds around 20 cm. Second, distance discrimination performance was relatively robust against additional early reflections, compared to other echolocation tasks like directional localization. Third, free head rotations during echolocation can improve distance discrimination performance in complex environmental settings. However, head movements do not necessarily provide a benefit over static echolocation from an optimal single orientation. These results show that accurate distance discrimination through echolocation is possible over a wide range of reference distances and environmental conditions. This is an important functional benefit of human echolocation, which may also play a major role in the calibration of auditory space representations.  相似文献   

19.

Background  

Echolocating bats emit vocalizations that can be classified either as echolocation calls or communication calls. Neural control of both types of calls must govern the same pool of motoneurons responsible for vocalizations. Electrical microstimulation in the periaqueductal gray matter (PAG) elicits both communication and echolocation calls, whereas stimulation of the paralemniscal area (PLA) induces only echolocation calls. In both the PAG and the PLA, the current thresholds for triggering natural vocalizations do not habituate to stimuli and remain low even for long stimulation periods, indicating that these structures have relative direct access to the final common pathway for vocalization. This study intended to clarify whether echolocation calls and communication calls are controlled differentially below the level of the PAG via separate vocal pathways before converging on the motoneurons used in vocalization.  相似文献   

20.
In this laboratory experiment it is shown that, like four North American soricid shrew species, the European common shrew Sorex araneus L. is able to use echolocation to identify open and closed tubes at a distance of 200 mm.
Three common shrews captured in Sweden were used for the experiments, which were carried out in darkness and within a sound-proof box. The experimental set-up eliminated orientation using sight, sound or scent from outside the experimental cage. Echolocation calls consisted of broadband ultrasonic clicks at low sound pressure. These were recorded using an ultrasound detector.
The ecological significance of echolocation in shrews is discussed. It is proposed that common shrews use echolocation to locate protective cover, thus minimizing the risk to be taken by, e.g. owls.
Echolocation may also be used for detecting obstacles in subterranean tunnels. Hence, echolocation could be of certain importance when abandoned burrows in the periphery of the tunnel system are restored during periods of increasing population densities. Since density peaks in most populations occur regularly each summer, and may reach extreme magnitudes in cyclic populations, the ecological significance of echolocation in shrews may be considerabl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号