首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated and sequenced a yeast gene encoding a protein (Mr 24,875) very rich in serine (SRP) and alanine residues that accounted for 25% and 20% of the total amino acids, respectively. The SRP1 gene is highly expressed in culture conditions leading to glucose repression (Marguet & Lauquin, 1986), the amount of SRP1 mRNA representing about 1 to 2% of total poly(A)+ RNA. A repetitive structure of eight direct tandem repeats 36-base long, also reflected in the amino acid sequence, was found in the second half of the open reading frame. The consensus amino acid sequence of the repeat was Ser-Ser-Ser-Ala-Ala-Pro-Ser-Ser-Ser-Glu-Ala-Lys. Replacing the genomic copy of the cloned gene with a disrupted SRP1 gene indicated that the SRP1 gene was not essential for viability in yeast, but several SRP1-homologous sequences were found within the yeast genome, raising the possibility that the disrupted SRP1 gene is rescued by one of the other SRP-homologous sequences. Complete separation of yeast chromosomes by contour-clamped homogeneous field electrophoresis indicated that, apart from chromosome V, which carries the SRP1 gene, 12 chromosomes have SRP-related sequences with various degrees of homology. These sequences were located on chromosomes XV, VII and XI under stringent conditions of hybridization (tm -20 degrees C), and observed on chromosomes I, II, III, IV, VI, VIII, X, XI and XII, only under low-stringency conditions (tm -40 degrees C). Northern blot analysis of both the wild type and SRP1-disrupted strains indicated that along with SRP1 at least one more member of the SRP family was transcribed to a 0.7 kb (1 kb = 10(3) bases) polyadenylated RNA species clearly distinct from the SRP1-specific mRNA (1 kb long). Analyses of the SRP1 repeat domain suggested a model for the divergent evolution of the repeats in the SRP1 sequence.  相似文献   

2.
Through use of multiply disomic strains, the genes arg1 and arg8 were excluded from all of chromosomes I to XVII except (i) XV and (ii) IX and XV, respectively. Further aneuploid analyses showed that these two genes were on the same chromosome. By tetrad analysis, arg1 was shown to be linked to SUP3 on the left arm of chromosome XV (parental ditype:nonparental ditype:tetratype = 74; 6:139) and arg8 was shown to be loosely linked to arg1 (parental ditype:nonparental ditype:tetratype 72:17:220) on the same arm. The sequence of the genes on this chromosome arm is centromere-SUP3-arg8. Because arg1 had previously been used to define an 18th chromosome, these results reestablished the minimum chromosome number in Saccharomyces cerevisiae as 17.  相似文献   

3.
Starting with two temperature-sensitive mutants (rpa190-1 and rpa190-5) of Saccharomyces cerevisiae, both of which are amino acid substitutions in the putative zinc-binding domain of the largest subunit (A190) of RNA polymerase I, we have isolated many independent pseudorevertants carrying extragenic suppressors (SRP) of rpa190 mutations. All the SRP mutations were dominant over the corresponding wild-type genes. They were classified into at least seven different loci by crossing each suppressed mutant with all of the other suppressed mutants and analyzing segregants. SRP mutations representing each of the seven loci were studied for their effects on other known rpa190 mutations. All of the SRP mutations were able to suppress both rpa190-1 and rpa190-5. In addition, one particular suppressor, SRP5, was found to suppress two other rpa190 mutations as well as an rpa190 deletion. Southern blot analysis combined with genetic crosses demonstrated that SRP5 maps to a region on chromosome XV loosely linked to rpa190 and represents a transposed mutant gene in two copies. Analysis of the A190 subunit by using anti-A190 antiserum indicated that the cellular concentration of A190 and hence of RNA polymerase I decreases in rpa190-1 mutants after a shift to 37 degrees C and that in the mutant strain carrying SRP5 this decrease is partially alleviated, presumably because of increased synthesis caused by increased gene dosage. These results suggest that the zinc-binding domain plays an important role in protein-protein interaction essential for the assembly and/or stability of the enzyme, regardless of whether it also participates directly in the interaction of the assembled enzyme with DNA.  相似文献   

4.
5.
6.
7.
8.
9.
The unicellular green alga Chlorella vulgaris (strain C-169) has a small genome (38.8 Mb) consisting of 16 chromosomes, which can be easily separated by CHEF gel electrophoresis. We have isolated and characterized the smallest chromosome (chromosome 1, 980 kb) to elucidate the fundamental molecular organization of a plant-type chromosome. Restriction mapping and sequence analyses revealed that the telomeres of this chromosome consist of 5′-TTTAGGG repeats running from the centromere towards the termini; this sequence is identical to those reported for several higher plants. This sequence is reiterated approximately 70 times at both termini, although individual clones exhibited microheterogeneity in both sequence and copy number of the repeats. Subtelomeric sequences proximal to the termini were totally different from each other: on the left arm, unique sequence elements (14–20 bp) which were specific to chromosome I, form a repeat array of 1.7 kb, whereas a 1.0 kb sequence on the right arm contained a poly(A)-associated element immediately next to the telomeric repeats. This element is repeated several times on chromosome I and many times on all the other chromosomes of this organism.  相似文献   

10.
The bacterial signal recognition particle (SRP) binds to ribosomes synthesizing inner membrane proteins and, by interaction with the SRP receptor, FtsY, targets them to the translocon at the membrane. Here we probe the conformation of SRP and SRP protein, Ffh, at different stages of targeting by measuring fluorescence resonance energy transfer (FRET) between fluorophores placed at various positions within SRP. Distances derived from FRET indicate that SRP binding to nontranslating ribosomes triggers a global conformational change of SRP that facilitates binding of the SRP receptor, FtsY. Binding of SRP to a signal-anchor sequence exposed on a ribosome-nascent chain complex (RNC) causes a further change of the SRP conformation, involving the flexible part of the Ffh(M) domain, which increases the affinity for FtsY of ribosome-bound SRP up to the affinity exhibited by the isolated NG domain of Ffh. This indicates that in the RNC–SRP complex the Ffh(NG) domain is fully exposed for binding FtsY to form the targeting complex. Binding of FtsY to the RNC–SRP complex results in a limited conformational change of SRP, which may initiate subsequent targeting steps.  相似文献   

11.
The unicellular green alga Chlorella vulgaris (strain C-169) has a small genome (38.8 Mb) consisting of 16 chromosomes, which can be easily separated by CHEF gel electrophoresis. We have isolated and characterized the smallest chromosome (chromosome 1, 980 kb) to elucidate the fundamental molecular organization of a plant-type chromosome. Restriction mapping and sequence analyses revealed that the telomeres of this chromosome consist of 5-TTTAGGG repeats running from the centromere towards the termini; this sequence is identical to those reported for several higher plants. This sequence is reiterated approximately 70 times at both termini, although individual clones exhibited microheterogeneity in both sequence and copy number of the repeats. Subtelomeric sequences proximal to the termini were totally different from each other: on the left arm, unique sequence elements (14–20 bp) which were specific to chromosome I, form a repeat array of 1.7 kb, whereas a 1.0 kb sequence on the right arm contained a poly(A)-associated element immediately next to the telomeric repeats. This element is repeated several times on chromosome I and many times on all the other chromosomes of this organism.  相似文献   

12.
13.
14.
As a typical ciliate, Tetrahymena thermophila is a unicellular eukaryote that exhibits nuclear dimorphism: each cell contains a diploid, germ line micronucleus (MICN) and a polyploid, somatic macronucleus (MACN). During conjugation, when a new MACN differentiates from a mitotic descendant of the diploid fertilization nucleus, the five MICN chromosomes are site-specifically fragmented into 250 to 300 MACN chromosomes. The classic chromosome breakage sequence (CBS) is a 15-bp element (TAAACCAACCTCTTT) reported to be necessary and sufficient for chromosome breakage. To determine whether a CBS is present at every site of chromosome fragmentation and to assess the range of sequence variation tolerated, 31 CBSs were isolated without preconception as to the sequence of the chromosome breakage element. Additional CBS-related sequences were identified in the whole-genome sequence by their similarities to the classic CBS. Forty CBS elements behaved as authentic chromosome breakage sites. The CBS nucleotide sequence is more diverse than previously thought: nearly half of the CBS elements identified by unbiased methods have a variant of the classic CBS. Only an internal 10-bp core is completely conserved, but the entire 15-bp chromosome breakage sequence shows significant sequence conservation. Our results suggest that any one member of the CBS family provides a necessary and sufficient cis element for chromosome breakage. No chromosome breakage element totally unrelated to the classic CBS element was found; such elements, if they exist at all, must be rare.  相似文献   

15.
Two representative genes for the 54 kDa protein subunit of the signal recognition particle (SRP54) of tomato were cloned. It was shown that both genes are expressed in the tomato cv. Rentita. SRP54 is encoded by nine exons distributed over 10 kb of genomic sequence. The amino acid sequences deduced for the two SRP54 genes are 92% identical and the calculated protein size is 55 kDa. Like the homologous proteins isolated from other eukaryotes, the tomato SRP54 is evidently divided into two domains. As deduced from sequence motif identity, the N-terminally located G-domain can be assumed to have GTPase activity. The C-terminal part of the protein is methionine rich (14% methionine) and represents the M-domain. In in vitro binding experiments, SRP54 of tomato was able to attach to the 7S RNA of tomato, its natural binding partner in the SRP. This interaction can only take place in a trimeric complex consisting of 7S RNA, SRP54 and SRP19. The latter protein subunit of the SRP complex is assumed to induce a conformational change in the 7S RNA. The human SRP19 was able to mediate the binding of the tomato SRP54 to the 7S RNA, irrespective of whether this latter originated from tomato or man.  相似文献   

16.
The spp81/ded1 mutations were isolated as suppressors of a Saccharomyces cerevisiae pre-mRNA splicing mutation, prp8-1. The SPP81/DED1 gene encodes a putative ATP-dependent RNA helicase. While attempting to clone the wild-type SPP81/DED1 gene we isolated plasmids which were able to suppress the cold-sensitive growth defect of spp81 mutants. These plasmids encoded a gene (named DBP1) which mapped to chromosome XVI and not to the SPP81/DED1 locus on chromosome XV. The cloned gene suppressed the defect of spp81/ded1 mutants when present on both high and low copy-number plasmids but complemented spp81/ded1 null mutants only when present on high copy-number plasmids. In contrast to the SPP81/DED1 gene the DBP1 gene was not essential for cell viability. The nucleotide sequence of the DBP1 gene revealed that it also encoded a putative ATP-dependent RNA helicase which showed considerable similarity at the amino acid level to the SPP81/DED1 protein.  相似文献   

17.
The contribution made by the RNA component of signal recognition particle (SRP) to its function in protein targeting is poorly understood. We have generated a complete secondary structure for Saccharomyces cerevisiae SRP RNA, scR1. The structure conforms to that of other eukaryotic SRP RNAs. It is rod-shaped with, at opposite ends, binding sites for proteins required for the SRP functions of signal sequence recognition (S-domain) and translational elongation arrest (Alu-domain). Micrococcal nuclease digestion of purified S. cerevisiae SRP separated the S-domain of the RNA from the Alu-domain as a discrete fragment. The Alu-domain resolved into several stable fragments indicating a compact structure. Comparison of scR1 with SRP RNAs of five yeast species related to S. cerevisiae revealed the S-domain to be the most conserved region of the RNA. Extending data from nuclease digestion with phylogenetic comparison, we built the secondary structure model for scR1. The Alu-domain contains large extensions, including a sequence with hallmarks of an expansion segment. Evolutionarily conserved bases are placed in the Alu- and S-domains as in other SRP RNAs, the exception being an unusual GU(4)A loop closing the helix onto which the signal sequence binding Srp54p assembles (domain IV). Surprisingly, several mutations within the predicted Srp54p binding site failed to disrupt SRP function in vivo. However, the strength of the Srp54p-scR1 and, to a lesser extent, Sec65p-scR1 interaction was decreased in these mutant particles. The availability of a secondary structure for scR1 will facilitate interpretation of data from genetic analysis of the RNA.  相似文献   

18.
19.
Here we report a highly variable nuclear marker that can be used for both soft and stony corals. Primers that amplify a ∼177 bp fragment from the nuclear gene encoding the 54 kDa subunit of the signal recognition particle (SRP54) were developed for the octocoral genus Carijoa. Cloning results from 141 individuals suggest that this hypervariable nuclear locus is a single-copy gene. Sequencing revealed a potential cryptic species previously thought to be Carijoa riisei. Results from an Analysis of Molecular Variance (AMOVA) based on mitochondrial DNA (mtDNA) explained <10% of the variation between Atlantic and Pacific samples of C. riisei (F st = 0.47), whereas the same comparison with SRP54 explained >33% of the variation (F st = 0.54). Using previously reported degenerate primers for SRP54, high levels of sequence variation were found at this locus across both scleractinian and octocorals. For example, pairwise sequence divergence within octocorals was ∼8–13 times greater with SRP54 than with mtDNA, and, up to 2.8% pairwise sequence divergence was found in SRP54 among individuals of Pocillopora whereas no variation at all was found in mtDNA markers. This case study with the octocoral C. riisei shows that variation in SRP54 appears sufficient to address questions of phylogeography as well as systematics of closely related species.  相似文献   

20.
We have constructed viable Saccharomyces cerevisiae strains containing a reciprocal translocation between the URA2 site of chromosome X and the HIS3 site of chromosome XV. Our methodology is an extension of the method originally developed to introduce an altered cloned sequence at the chromosomal location from which the parent sequence was derived (S. Scherer and R.W. Davis, Proc. Natl. Acad. Sci. U.S.A. 76:4951-4955, 1979). It comprises three essential steps. First, a nonreverting ura2- strain was constructed by deleting a 3.7-kilobase fragment from the coding sequence of the wild-type URA2 gene. Second, part of the coding sequence of the wild-type URA2 gene (without promotor) was inserted at the HIS3 locus of the ura2- strain. Third, after several generations of growth on uracil-supplemented medium, ura2+ colonies were selected which resulted from mitotic recombination between the nonoverlapping deletions of URA2 located on chromosomes X and XV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号