首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Homogenates of hypocotyls of light-grown mung-bean (Vigna radiata (L.) Wilczek) seedlings catalyzed the formation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) from the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-coenzyme A. Apparent Km values for ACC and malonyl-CoA were found to be 0.17 mM and 0.25 mM, respectively. Free coenzyme A was an uncompetitive inhibitor with respect to malonyl-CoA (apparent Ki=0.3 mM). Only malonyl-CoA served as an effective acyl donor in the reaction. The d-enantiomers of unpolar amino acids inhibited the malonylation of ACC. Inhibition by d-phenylalanine was competitive with respect to ACC (apparent Ki=1.2 mM). d-Phenylalanine and d-alanine were malonylated by the preparation, and their malonylation was inhibited by ACC. When hypocotyl segments were administered ACC in the presence of certain unpolar d-amino acids, the malonylation of ACC was inhibited while the production of ethylene was enhanced. Thus, a close-relationship appears to exist between the malonylation of ACC and d-amino acids. The cis- as well as the trans-diastereoisomers of 2-methyl- or 2-ethyl-substituted ACC were potent inhibitors of the malonyltransferase. Treatment of hypocotyl segments with indole-3-acetic acid or CdCl2 greatly increased their content of ACC and MACC, as well as their release of ethylene, but had little, or no, effect on their extractable ACC-malonylating activity.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

2.
Since the discovery of1-(malonylamino)cyclopropane-1-carboxylic acid (MACC)as a major metabolite of both endogenous andexogenously applied 1-aminocyclopropane-1-carboxylicacid (ACC), it has become evident that the formationof MACC from ACC can act to regulate ethyleneproduction in certain tissues. Hence it was suggestedthat MACC could serve as an indicator of water-stresshistory in plant tissues. The accurate quantificationof MACC in plant tissues is essential forunderstanding the role of MACC in the regulation ofethylene biosynthesis.Hoffman et al. [15] described a method for themeasurement of MACC in which MACC was hydrolysed byHCl to ACC, which was then assayed by chemicaloxidation to form ethylene. Attempts have been made byothers to raise monoclonal antibodies to MACC so thatan immunoassay could be developed in order to gain adeeper understanding of stress-induced ethyleneproduction but no further publications have beenforthcoming.Here a method employing GC-MS is compared with theindirect assay for MACC, which is based uponhydrolysis of MACC to ACC and conversion of ACC byhypochlorite reagent to ethylene which is subsequentlyquantified by GC.  相似文献   

3.
Since 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the major conjugate of 1-aminocyclopropane-1-carboxylic acid (ACC) in plant tissues, is a poor ethylene producer, it is generally thought that MACC is a biologically inactive end product of ACC. In the present study we have shown that the capability of watercress (Nasturtium officinale R. Br) stem sections and tobacco (Nicotiana tabacum L.) leaf discs to convert exogenously applied MACC to ACC increased with increasing MACC concentrations (0.2-5 millimolar) and duration (4-48 hours) of the treatment. The MACC-induced ethylene production was inhibited by CoCl2 but not by aminoethoxyvinylglycin, suggesting that the ACC formed is derived from the MACC applied, and not from the methionine pathway. This was further confirmed by the observation that radioactive MACC released radioactive ACC and ethylene. A cell-free extract, which catalyzes the conversion of MACC to ACC, was prepared from watercress stems which were preincubated with 1 millimolar MACC for 24 hours. Neither fresh tissues nor aged tissues incubated without external MACC exhibited enzymic activity, confirming the view that the enzyme is induced by MACC. The enzyme had a Km of 0.45 millimolar for MACC and showed maximal activity at pH 8.0 in the presence of 1 millimolar MnSO4. The present study indicates that high MACC levels in the plant tissue can induce to some extent the capability to convert MACC to ACC.  相似文献   

4.
In vivo ethylene production by hypocotyl segments of sunflower seedlings and in vitro activity of 1-aminocyclopropane-1-carboxylic acid oxidase (formerly ethylene-forming enzyme) extacted from the same tissues increase with increasing concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and oxygen. ACC oxidase activity follows Michaelis-Menten kinetics. The apparent Km values of the enzyme towards ACC, estimated in vivo and in vitro, are respectively 219 M and 20.6 M. Both Km values towards O2 are similar, ca 10.6–11.4%. A decrease in concentration in one of the substrates (ACC or O2) results in an increase in in vivo apparent Km of ACC oxidase for the other substrate. On the contrary, Km values of the enzyme towards ACC or O2 estimated in vitro are not dependent upon the concentration of the other substrate (ACC or O2).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - MACC malonylate 1-aminocyclopropane-1-carboxylic acid - SD standard deviation  相似文献   

5.
Yu Liu  Ling-yuan Su  Shang Fa Yang 《Planta》1984,161(5):439-443
1-Aminocyclopropane-1-carboxylic acid (ACC) is known to be converted to ethylene and conjugated into N-malonyl-ACC in plant tissues. When -amino[1-14C]isobutyric acid (AIB), a structural analog of ACC, was administered to mungbean (Vigna radiata L.) hypocotyl segments, it was metabolized to 14CO2 and conjugated to N-malonyl-AIB (MAIB). -Aminoisobutyric acid inhibited the conversion of ACC to ethylene and also inhibited, to a lesser extent, N-malonylation of ACC and d-amino acids. Although the malonylation of AIB was strongly inhibited by ACC as well as by d-amino acids, the metabolism of AIB to CO2 was inhibited only by ACC but not by d-amino acids. Inhibitors of ACC conversion to ethylene such as anaerobiosis, 2,4-dinitrophenol and Co2+, similarly inhibited the conversion of AIB to CO2. These results indicate that the malonyalation of AIB to MAIB is intimately related to the malonylation of ACC and d-amino acids, whereas oxidative decarboxylation of AIB is related to the oxidative degradation of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AIB -aminoisobutyric acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid - MAIB -(malonylamino)-isobutyric acid - Mes 2-(N-morpholino)ethanesulfonic acid  相似文献   

6.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

7.
Vacuoles were isolated from Acer pseudoplatanus cells that were incubated with [14C]1-aminocyclopropane-1-carboxylic acid (ACC). The kinetics of [14C]1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) formation are consistent with the interpretation that MACC is synthesized in the cytosol, transported through the tonoplast, and accumulated in the vacuole. Twenty hours after chasing the labeled ACC with unlabeled ACC and adding 1 millimolar unlabeled MACC, all the [14C]MACC synthesized is located in the vacuole. Whole cells preloaded with [14C]MACC and then submitted to a continuous washing out, readily release their cytosolic MACC until complete exhaustion. The half-time of MACC efflux from the cytosol, calculated by the technique of compartmental analysis, is about 22 minutes. In contrast, vacuolar MACC remains sequestered within the vacuole. The transport of labeled MACC into the vacuole is stimulated by the presence of unlabeled MACC in the suspension medium, probably as a result of a reduced efflux of the labeled MACC from the cytosol into the suspending medium.  相似文献   

8.
Aminoethoxyvinylglycine (AVG) and cobalt ions strongly inhibit the conversion of added methionine or aminocyclopropane-1-carboxylic acid (ACC) into ethylene by green-coloured, non-stressed Norway spruce (Picea abies L.) needles but only 30%–40% of basal ethylene formation is affected by such inhibitors. In addition, free radical-mediated ACC-independent ethylene formation (AIEF) of the type released by brown-coloured spruce needles also occurs in extracts from healthy green-coloured needles. Treatment with CdCl2 (10 mM), Na2S2O5 (5 mM) or FeSO4 (10 mM) induces 3–7 fold increases in the rates of ethylene evolution from green-coloured needles. However, only Cd2+-induced ethylene formation is inhibited by AVG while ethylene induced by S2O5 2- or Fe2+ is insensitive to added AVG although increased levels of ACC have also been detected in these treatments. Nevertheless, ethylene-forming decomposition of the precursors of AIEF is accelerated by S2O5 - or Fe2+ which indicates that the ethylene released from green-coloured spruce needles is formed by a combination of both the ACC-dependent and AIEF pathways.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - AIEF ACC-independent ethylene formation - EFE ethylene-forming enzyme - MACC N-malonyl(amino)cyclopropane-1-carboxylic acid - DTBN di-tert-butylnitroxide - MNP 2-methyl-2-nitrosopropane - SAM S-adenosylmethionine - TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxyl  相似文献   

9.
The cofactor of enzymatic, 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation was concentrated on cation exchange columns. When chelators of cations were added to the homogenates, cofactor activity was lost. Cofactor fractions were partly resistant to oxidation at 600° C. Mn2+ substituted for the cofactor in ethylene formation from 1-aminocyclopropane-1-carboxylic acid by a protein fraction isolated from etiolated pea shoots. In addition, Mn2+ enhanced the stimulatory effect of the concentrated cofactor. The elution volume for the cofactor on a Sephadex G-25 column was lower than that of MnCl2. In paper electrophoresis the cofactor migrated to the cathode at pH 10.8 and 2.2. The RF of cofactor on cellulose plates developed in butanol: acetic acid: H2O was 0.4. After cellulose chromatography, cofactor activity had to be reconstituted by the addition of MnCl2. Chelators, anti-oxidants, and catalase were inhibitors of Mn2+-cofactor-dependent ethylene formation. The protein necessary for 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation in vitro was seperated from 95–98% of the total protein in homogenates by DE-52 cellulose chromatography and (NH4)2SO4-fractionation.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EDTA ethylenediaminetetraacetic acid - DDTC diethyldithiocarbamate  相似文献   

10.
The effect of 0.5 mM salicylic acid (SA) pretreatment and of growing at hardening temperatures on chilling-induced changes in 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl 1-aminocyclopropane-1-carboxylic acid (MACC) was investigated in young maize (Zea mays L.) plants grown in hydroponic solution at 22/20 °C. Chilling at 5 °C caused an increase in ACC content;however, this increase was less pronounced in plants cold acclimated at 13/11 °C 4 d before the chilling treatment, and in those which were pretreated with SA for 1 d before the cold stress. Changes in MACC at low temperature showed no correlation with chilling tolerance in maize.  相似文献   

11.
A simple and sensitive chemical assay was developed for 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene. The assay is based on the liberation of ethylene from ACC at pH 11.5 in the presence of pyridoxal phosphate, MnCl2 and H2O2. This assay was used to detect ACC in extracts of tomato fruits (Lycopersicon esculentum Mill.) and to measure the activity of a soluble enzyme from tomato fruit that converted S-adenosylmethionine (SAM) to ACC. The enzyme had a Km of 13 M for SAM, and conversion of SAM to ACC was competitively and reversibly inhibited by aminoethoxyvinylglycine (AVG), an analog of rhizobitoxine. The Ki value for AVG was 0.2 M. The level of the ACC-forming enzyme activity was positively correlated with the content of ACC and the rate of ethylene formation in wild-type tomatoes of different developmental stages. Mature fruits of the rin (non-ripening) mutant of tomato, which only produce low levels of ethylene, contained much lower levels of ACC and of the ACC-forming enzyme activity than wild-type tomato fruits of comparable age.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid - SAM S-adenosyl-L-methionine Michigan Agricultural Experiment Station No. 8876  相似文献   

12.
Transport and metabolism of [2,3-14C] 1-aminocyclopropane-1-carboxylic acid (ACC) from roots to shoots in 4-day-old sunflower (Helianthus annuus L.) seedlings were studied. [14C]ACC was detected in, and 14C2H4 was evolved from, shoots 0.5 hours after [14C]ACC was supplied to roots. Ethylene emanation from the shoots returned to normal levels after 6 hours. The roots showed a similar pattern, although at 24 hours ethylene emanation was still slightly higher than in those plants that did not receive ACC. [14C]N-malonyl-ACC (MACC) was detected in both tissues at all times sampled. [14C]MACC levels surpassed [14C]ACC levels in the shoot at 2 hours, whereas [14C]MACC levels in the root remained below [14C]ACC levels until 6 hours, after which they were higher. Thin-layer chromatography analysis identified [14C] ACC in 1-hour shoot extracts, and [14C]MACC was identified in root tissues at 1 and 12 hours after treatment. [14C]ACC and [14C] MACC in the xylem sap of treated seedlings were identified by thin-layer chromatography. Xylem transport of [14C]ACC in treated seedlings, and transport of ACC in untreated seedlings, was confirmed by gas chromatography-mass spectrometry. Some evidence for the presence of [14C]MACC in xylem sap in [14C]ACC-treated seedlings is presented. A substantial amount of radioactivity in both ACC and MACC fractions was detected leaking from the roots over 24 hours. A second radiolabeled volatile compound was trapped in a CO2-trapping solution but not in mercuric perchlorate. Levels of this compound were highest after the peak of ACC levels and before peak MACC levels in both tissues, suggesting that an alternate pathway of ACC metabolism was operating in this system.  相似文献   

13.
Jörg R. Konze  Hans Kende 《Planta》1979,146(3):293-301
Homogenates of etiolated pea (Pisum sativum L.) shoots formed ethylene upon incubation with 1-aminocyclopropane-1-carboxylic acid (ACC). In-vitro ethylene formation was not dependent upon prior treatment of the tissue with indole-3-acetic acid. When homogenates were passed through a Sephadex column, the excluded, high-molecular-weight fraction lost much of its ethylene-synthesizing capacity. This activity was largely restored when a heat-stable, low-molecular-weight factor, which was retarded on the Sephadex column, was added back to the high-molecular-weight fraction. The ethylene-synthesizing system appeared to be associated, at least in part, with the particulate fraction of the pea homogenate. Like ethylene synthesis in vivo, cell-free ethylene formation from ACC was oxygen dependent and inhibited by ethylenediamine tetraacetic acid, n-propyl gallate, cyanide, azide, CoCl3, and incubation at 40°C. It was also inhibited by catalase. In-vitro ethylene synthesis could only be saturated at very high ACC concentrations, if at all. Ethylene production in pea homogenates, and perhaps also in intact tissue, may be the result of the action of an enzyme that needs a heat-stable cofactor and has a very low affinity for its substrate, ACC, or it may be the result of a chemical reaction between ACC and the product of an enzyme reaction. Homogenates of etiolated pea shoots also formed ethylene with 2-keto-4-mercaptomethyl butyrate (KMB) as substrate. However, the mechanism by which KMB is converted to ethylene appears to be different from that by which ACC is converted.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - KMB 2-keto-4-mercaptomethyl butyrate - SAM S-adenosylmethionine  相似文献   

14.
During the hypersensitive reaction of Samsun NN tobacco to tobacco mosaic virus (TMV) the inoculated leaves synthesize large quantities of ethylene. At the same time, 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugate of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) accumulates. Smaller amounts of MACC are formed concomitant with ethylene synthesis during the normal development of tobacco leaves. The conjugate appears neither to be hydrolysed to liberate ACC, nor to be transported to other plant parts. Its accumulation thus reflects the history of the operation of the pathway of ethylene synthesis in the leaf. In floating leaf discs exogenously applied ACC was converted only slowly to both ethylene and MACC. More ethylene and less MACC were produced in darkness than in light, suggesting that environmental conditions may influence the ratio at which ACC in converted to either ethylene or MACC.  相似文献   

15.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

16.
The biosynthetic basis for the high rates of ethylene production by the apical region of etiolated pea (Pisum sativum L.) seedlings was investigated. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was quantified in extracts of various regions of seedlings by measuring isotopic dilution of a 2H-labelled internal standard using selected-ion-monitoring gas chromatography/mass spectrometry. The ACC levels in the apical hook and leaves were much higher than in the expanded internodes of the epicotyl. The capacity of excised tissue sections to convert exogenous ACC to ethylene was also much greater in the apical region, reflecting the distribution of soluble protein in the epicotyl.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - FW fresh weight - GC/MS coupled gas chromatography/mass spectrometry - HPLC high-performance liquid chromatography  相似文献   

17.
A sensitive and specific method is described for the routine assay of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in 100–200 mg fresh weight samples of green or etiolated tissue. The method involves high performance liquid chromatography (HPLC) and gas chromatography linked to mass spectrometry (GCMS) and uses 14C-labelled ACC as an internal standard, N-benzoyl n-propyl ACC as an easily prepared derivative for HPLC and GCMS, and N-benzoyl isobutyl ACC as an internal standard for GCMS. The procedure is faster and safer than an existing GCMS method and more specific and reliable than indirect assays widely in use. The method has been used to measure ACC in maize roots, young leaves of cucumber, and aerobic or anaerobic seedlings of rice.  相似文献   

18.
White light inhibits the conversion of 1-amino-cyclopropane-1-carboxylic acid (ACC) in discs of green leaves of tobacco (Nicotiana tabacum L.) and segments of oat (Avena sativa L.) leaves by from 60 to 90%. Etiolated oat leaves do not show this effect. The general nature of the effect is shown by its presence in both a mono- and a dicotyledon. Since the leaves have been grown and pre-incubated in light, yet can produce from 2 to 9 times as much ethylene in the dark as in the light, it follows that the light inhibition is fully reversible. The inhibition by light is about equal to that exerted in the dark by CoCl2; it can be partly reversed by dithiothreitol and completely by mercaptoethanol. Thus the light is probably acting, via the photosynthetic system, on the SH group(s) of the enzyme system converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

19.
Ching Huei Kao  Shang Fa Yang 《Planta》1982,155(3):261-266
The mechanism of light-inhibited ethylene production in excised rice (Oryza sativa L.) and tobacco (Nicotiana tabacum L.) leaves was examined. In segments of rice leaves light substantially inhibited the endogenous ethylene production, but when CO2 was added into the incubation flask, the rate of endogenous ethylene production in the light increased markedly, to a level which was even higher than that produced in the dark. Carbon dioxide, however, had no appreciable effect of leaf segments incubated in the dark. The endogenous level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was not significantly affected by lightdark or CO2 treatment, indicating that dark treatment or CO2exerted its effect by promoting the conversion of ACC to ethylene. This conclusion was supported by the observations that the rate of conversion of exogenously applied ACC to ethylene was similarly inhibited by light, and this inhibition was relieved in the presence of CO2. Similar results were obtained with tobacco leaf discs. The concentrations of CO2 giving half-maximal activity was about 0.06%, which was only slightly above the ambient level of 0.03%. The modulation of ACC conversion to ethylene by CO2 or light in detached leaves of both rice and tobacco was rapid and fully reversible, indicating that CO2 regulates the activity, but not the synthesis, of the enzyme converting ACC to ethylene. Our results indicate that light inhibition of ethylene production in detached leaves is mediated through the internal level of CO2, which directly modulates the activity of the enzyme converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid Recipient of a Republic of China National Science Council Fellowship  相似文献   

20.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号