首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kuna, Samuel T., and Christi R. Vanoye.Respiratory-related pharyngeal constrictor muscle activity indecerebrate cats. J. Appl. Physiol.83(5): 1588-1594, 1997.Respiratory-related activity of thehyopharyngeus (middle pharyngeal constrictor) and thyropharyngeus(inferior pharyngeal constrictor) muscles was determined indecerebrate, tracheotomized adult cats and compared with theelectromyographic activity of the thyroarytenoid, a vocal cordadductor. During quiet breathing, the hyopharyngeus and usually thethyroarytenoid exhibited phasic activity during expiration and tonicactivity throughout the respiratory cycle. Respiratory-related thyropharyngeus activity was absent under these conditions. Progressive hyperoxic hypercapnia and progressive isocapnic hypoxia increased phasic expiratory activity in both pharyngeal constrictor (PC) musclesbut tended to suppress thyroarytenoid activity. Passively inducedhypocapnia and the central apnea that followed the cessation of themechanical hyperventilation were associated with tonic activation ofthe hyopharyngeus and thyroarytenoid but no recruitment inthyropharyngeus activity. The expiratory phase of a sigh and progressive pneumothorax were associated with an increase in phasic thyroarytenoid activity but no change in phasic PC activity. The results indicate that a variety of stimuli modulate respiratory-related PC activity, suggesting that the PC muscles may have a role in theregulation of upper airway patency during respiration.

  相似文献   

2.
We undertook the present investigation to establish whether narrowing/closure of the upper airway occurs during spontaneous and provoked respiratory rhythm disturbances and whether pharyngeal constrictor muscle recruitment occurs coincident with upper airway occlusion during prolonged expiratory periods. Upper airway pressure-flow relationships and middle pharyngeal constrictor (mPC) EMG activities were recorded in 11 adult female goats during spontaneous and provoked prolongations in expiratory time (Te). A total of 213 spontaneous prolongations of expiration were recorded. Additionally, 169 prolonged expiratory events preceded by an augmented breath were included in the analyses. In separate trials on different days, Te was prolonged by systemic administration of dopamine, by raising the inspired fraction of O(2) from 0.10 to 1.00 during poikilocapnic conditions or by systemic administration of clonidine. Continuous tonic activation of the mPC EMG was observed during each prolonged Te period regardless of the duration or initiating cause. However, significant increases in subglottic tracheal pressure, with expiratory airflow braking indicative of upper airway narrowing or closure, was only observed during spontaneous events without a preceding augmented breath and during clonidine-induced events. Tonic mPC activation proved an unreliable indicator of airway occlusion. Furthermore, mPC muscle activation alone is not sufficient to induce pharyngeal occlusion during prolonged expiration. Our data suggest that airway closure is not a common occurrence during provoked respiratory disturbances in awake goats. We propose that airway closure, when present during prolonged Te, is more likely dependent on activation of laryngeal adductor muscles with glottic braking independent of pharyngeal narrowing.  相似文献   

3.
4.
The present study was undertaken to gain further insight into the mechanisms responsible for the sustained active expiratory upper airway closure previously observed during high-permeability pulmonary edema in lambs. The experiments were conducted in nonsedated lambs, in which airflow and thyroarytenoid and inferior pharyngeal constrictor muscle electromyographic activity were recorded. We first studied the consequences of hemodynamic pulmonary edema (induced by impeding pulmonary venous return) on upper airway dynamics in five lambs; under this condition, a sustained expiratory upper airway closure consistently appeared. We then tested whether expiratory upper airway closure was related to vagal afferent activity from bronchopulmonary receptors. Five bivagotomized lambs underwent high-permeability pulmonary edema: no sustained expiratory upper airway closure was observed. Finally, we studied whether a sustained decrease in lung volume induced a sustained expiratory upper airway closure. Five lambs underwent a 250-ml pleural infusion: no sustained expiratory upper airway closure was observed. We conclude that 1) the sustained expiratory upper airway closure observed during pulmonary edema in nonsedated lambs is related to stimulation of vagal afferents by an increase in lung water and 2) a decrease in lung volume does not seem to be the causal factor.  相似文献   

5.
In nonsedated newborn lambs, nasal pressure support ventilation (nPSV) can lead to an active glottal closure in early inspiration, which can limit lung ventilation and divert air into the digestive system, with potentially deleterious consequences. During volume control ventilation (nVC), glottal closure is delayed to the end of inspiration, suggesting that it is reflexly linked to the maximum value of inspiratory pressure. Accordingly, the aim of the present study was to test whether inspiratory glottal closure develops at the end of inspiration during nasal neurally adjusted ventilatory assist (nNAVA), an increasingly used ventilatory mode where maximal pressure is also reached at the end of inspiration. Polysomnographic recordings were performed in eight nonsedated, chronically instrumented lambs, which were ventilated with progressively increasing levels of nPSV and nNAVA in random order. States of alertness, diaphragm, and glottal muscle electrical activity, tracheal pressure, Spo(2), tracheal Pet(CO(2)), and respiratory inductive plethysmography were continuously recorded. Although phasic inspiratory glottal constrictor electrical activity appeared during nPSV in 5 of 8 lambs, it was never observed at any nNAVA level in any lamb, even at maximal achievable nNAVA levels. In addition, a decrease in Pco(2) was neither necessary nor sufficient for the development of inspiratory glottal constrictor activity. In conclusion, nNAVA does not induce active inspiratory glottal closure, in contrast to nPSV and nVC. We hypothesize that this absence of inspiratory activity is related to the more physiological airway pressurization during nNAVA, which tightly follows diaphragm electrical activity throughout inspiration.  相似文献   

6.
The present study, performed in nonsedated, conscious lambs, consisted of two parts. In the first part, we 1) examined for the first time whether a respiratory response to pulmonary C-fiber stimulation could be elicited in nonsedated newborns and 2) determined whether this response could be abolished by capsaicin pretreatment. Then, by using capsaicin-desensitized lambs, we studied whether pulmonary C fibers were involved in the sustained, active expiratory upper airway closure previously observed during pulmonary edema. Airflow and thyroarytenoid and inferior pharyngeal constrictor muscle electromyographic activities were recorded. In the first set of experiments, a 5-10 microg/kg capsaicin bolus intravenous injection in seven intact lambs consistently led to a typical pulmonary chemoreflex, showing that C fibers are functionally mature in newborn lambs. In the second series of experiments, eight lambs pretreated with 25-50 mg/kg subcutaneous capsaicin did not exhibit any respiratory response to 10-50 microg/kg intravenous capsaicin injection, implicating C fibers in the response. Finally, in the above capsaicin-desensitized lambs, we observed that halothane-induced high-permeability pulmonary edema did not cause the typical response of sustained expiratory upper airway closure seen in the intact lamb. We conclude that functionally mature C fibers are present and responsible for a pulmonary chemoreflex in response to capsaicin intravenous injection in nonsedated lambs. Capsaicin pretreatment abolishes this reflex. Furthermore, the sustained expiratory upper airway closure observed during halothane-induced pulmonary edema in intact nonsedated lambs appears to be related to a reflex involving stimulation of pulmonary C fibers.  相似文献   

7.
To study the effects of inflation pressure and tidal volume (VT) on protein permeability in the neonatal pulmonary microcirculation, we measured lung vascular pressures, blood flow, lymph flow (QL), and concentrations of protein in lymph (L) and plasma (P) of 22 chronically catheterized lambs that received mechanical ventilation at various peak inflation pressures (PIP) and VT. Nine lambs were ventilated initially with a PIP of 19 +/- 1 cmH2O and a VT of 10 +/- 1 ml/kg for 2-4 h (base line), after which we overexpanded their lungs with a PIP of 58 +/- 3 cmH2O and a VT of 48 +/- 4 ml/kg for 4-8 h. QL increased from 2.1 +/- 0.4 to 13.9 +/- 5.0 ml/h. L/P did not change, but the ratio of albumin to globulin in lymph relative to the same ratio in plasma decreased, indicating altered protein sieving in the pulmonary microcirculation. Seven other lambs were mechanically ventilated for 2-4 h at a PIP of 34 +/- 1 cmH2O and a VT of 23 +/- 2 ml/kg (base line), after which their chest and abdomen were bound so that PIP increased to 54 +/- 1 cmH2O for 4-6 h without a change in VT. QL decreased on average from 2.8 +/- 0.6 to 1.9 +/- 0.3 ml/h (P = 0.08), and L/P was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We evaluated the dose response to a stable thromboxane (Tx) A2 analogue (sTxA2; 0.3-30 micrograms) in the pulmonary circulation and its effect on the distribution of pressure gradients determined by the occlusion technique in isolated nonblood perfused newborn lamb lungs. The total pulmonary pressure gradient (delta Pt) was partitioned into pressure drops across the relatively indistensible arteries and veins (delta Pv) and relatively compliant vessels. We also evaluated the effects of prostacyclin (PGI2) and a Tx receptor antagonist (ONO 3708) on the sTxA2-induced pulmonary responses. Injection of sTxA2 caused a dose-related increase in the pulmonary arterial pressure, with the primary component of the increase in delta Pt (4.1 +/- 0.8 to 13.9 +/- 0.4 Torr) at 30 micrograms derived from the prominent rise in delta Pv (1.8 +/- 0.3 to 9.8 +/- 0.9 Torr). Infusion of PGI2 (0.4 microgram.kg-1.min-1) reduced the response to sTxA2 mainly by attenuating the delta Pv elevation. Infusion of ONO 3708 (100 micrograms.kg-1.min-1) completely abolished the sTxA2-induced pulmonary hypertension. Injection of sTxA2 resulted in pulmonary edema characterized by a significant increase in wet-to-dry lung weight ratio (9.13 +/- 0.35 vs. 7.15 +/- 0.41 in control lungs). The sTxA2-induced pulmonary edema was increased by PGI2 and inhibited by ONO 3708. We conclude that thromboxane-induced pulmonary hypertension is primarily produced by venoconstriction and prostacyclin may worsen the edema induced by thromboxane.  相似文献   

9.
The present study evaluated the reflex response of the expiratory muscles to pulmonary congestion and edema. The electromyograms of two thoracic and four abdominal expiratory muscles were recorded in 12 anesthetized dogs. Pulmonary edema was induced by rapid saline infusion in six dogs and injection of oleic acid into the pulmonary circulation in the remaining six dogs. Both forms of pulmonary edema reduced pulmonary compliance, interfered with gas exchange, and induced a rapid and shallow breathing pattern. The electrical activity of all abdominal muscles was suppressed during both forms of pulmonary edema. In contrast, the electromyogram activity of the thoracic expiratory muscles was not significantly affected by pulmonary edema. Acute pulmonary arterial hypertension produced in two dogs by inflating a balloon in the left atrium had no effect on ventilation or expiratory muscle electrical activity. In two vagotomized dogs, pulmonary edema did not inhibit the expiratory muscles. We conclude that pulmonary edema suppresses abdominal but not thoracic expiratory muscle activity by vagal reflex pathway(s). Extravasation of fluid into the lung appears to be more important than an increase in pulmonary vascular pressure in eliciting this response.  相似文献   

10.
Microvascular membrane permeability in high surface tension pulmonary edema   总被引:2,自引:0,他引:2  
Pulmonary edema was induced in dogs by an aerosol of detergent dioctyl sodium sulfosuccinate. The permeability of the pulmonary microvascular membrane was assessed by cannulating an afferent tracheobronchial lymphatic and comparing the lymph-to-plasma total protein concentration (CL/CP) during high lymph flows induced by increasing left atrial (LA) pressure after detergent aerosol. Base-line CL/CP of 0.69 +/- 0.02 fell to 0.55 +/- 0.03 with increased LA pressure alone. CL/CP fell to 0.47 +/- 0.02 when LA pressure was increased following detergent, 0.51 +/- 0.04 following an aerosol of the vehicle in which the detergent was dissolved, and 0.73 +/- 0.10 following intravenous alloxan. In additional animals protein concentration of the airway edema fluid was compared with that of plasma. The ration of protein concentration of airway fluid to plasma was 0.63 +/- 0.08 following detergent aerosol, 0.64 +/- 0.10 following increased LA pressure, and 0.94 +/- 0.09 following administration of alloxan. These data indicate no major increase in pulmonary microvascular permeability following detergent aerosol and support the concept that pulmonary edema is the consequence of reduced interstitial perimicrovascular hydrostatic pressure caused by increased alveolar surface tension.  相似文献   

11.
12.
We used the in situ blood-perfused left lower lobe preparation of the dog to examine the effect of hydrostatic and permeability edema on the slope and intercept of the vascular pressure-flow (P/Q) relationship and on the longitudinal distribution of vascular resistance with the arterial and venous occlusion technique. Hydrostatic edema (HE) was induced by raising the venous pressure, and permeability edema (PE) was induced with alpha-naphthylthiourea. When the hematocrit (Hct) of the perfusate was kept normal (approximately 40%), HE had no significant effect on either the slope or the intercept of the P/Q relationship or on the distribution of vascular resistance. PE caused a small increase in the intercept of the P/Q relationship and a small rise in the resistance of the vessels in the middle segment. In another series of HE experiments in which Hct was allowed to increase during edema formation, there was a marked increase in vascular resistance. We conclude that edema per se does not increase vascular resistance significantly and that the increases in vascular resistance which were observed previously by other investigators in the isolated lungs may be due to increases in blood hematocrit.  相似文献   

13.
We investigated the effects of infusions of ATP-MgCl2 on the circulation in 11 spontaneously breathing newborn lambs during pulmonary hypertension induced either by the infusion of U-46619, a thromboxane A2 mimetic, or by hypoxia. During pulmonary hypertension induced by U-46619, ATP-MgCl2 (0.01-1.0 mg.kg-1.min-1) caused a significant dose-dependent decrease in pulmonary arterial pressure (12.4-40.7%, P less than 0.05), while systemic arterial pressure decreased only at the highest doses (P less than 0.05). Left atrial infusions of ATP-MgCl2 caused systemic hypotension without decreasing pulmonary arterial pressure. During hypoxia-induced pulmonary hypertension, ATP-MgCl2 caused a similar significant dose-dependent decrease in pulmonary arterial pressure (12.0-41.1%, P less than 0.05), while systemic arterial pressure decreased only at high doses (P less than 0.05). Regression analysis showed selectivity of the vasodilating effects of ATP-MgCl2 for the pulmonary circulation during pulmonary hypertension induced either by U-46619 or hypoxia. ATP-MgCl2 is a potent vasodilator with a rapid metabolism that allows for selective vasodilation of the vascular bed first encountered (pulmonary or systemic). We conclude that infusions of ATP-MgCl2 may be clinically useful in the treatment of children with pulmonary hypertension.  相似文献   

14.
We have previously shown (Am. Rev. Respir. Dis. 136: 886-891, 1987) improved cardiac output in dogs with pulmonary edema ventilated with external continuous negative chest pressure ventilation (CNPV) using negative end-expiratory pressure (NEEP), compared with continuous positive-pressure ventilation (CPPV) using equivalent positive end-expiratory pressure (PEEP). The present study examined the effect on lung water of CNPV compared with CPPV to determine whether the increased venous return created by NEEP worsened pulmonary edema in dogs with acute lung injury. Oleic acid (0.06 ml/kg) was administered to 27 anesthetized dogs. Supine animals were then divided into three groups and ventilated for 6 h. The first group (n = 10) was treated with intermittent positive-pressure ventilation (IPPV) alone; the second (n = 9) received CNPV with 10 cmH2O NEEP; the third (n = 8) received CPPV with 10 cmH2O PEEP. CNPV and CPPV produced similar improvements in oxygenation over IPPV. However, cardiac output was significantly depressed by CPPV, but not by CNPV, when compared with IPPV. Although there were no differences in extravascular lung water (Qwl/dQl) between CNPV and CPPV, both significantly increased Qwl/dQl compared with IPPV (7.81 +/- 0.21 and 7.87 +/- 0.31 vs. 6.71 +/- 0.25, respectively, P less than 0.01 in both instances). CNPV and CPPV, but not IPPV, enhanced lung water accumulation in the perihilar areas where interstitial pressures may be most negative at higher lung volumes.  相似文献   

15.
16.
17.
18.
In a model of increased hydrostatic pressure pulmonary edema Parker et al. (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 267-276, 1978) demonstrated that alveolar pressure in occluded fluid-filled lung segments was determined primarily by interstitial fluid pressure. Alveolar pressure was subatmospheric at base line and rose with time as hydrostatic pressure was increased and pulmonary edema developed. To further test the hypothesis that fluid-filled alveolar pressure is determined by interstitial pressure we produced permeability pulmonary edema-constant hydrostatic pressure. After intravenous injection of oleic acid in dogs (0.01 mg/kg) the alveolar pressure rose from -6.85 +/- 0.8 to +4.60 +/- 2.28 Torr (P less than 0.001) after 1 h and +6.68 +/- 2.67 Torr (P less than 0.01) after 3 h. This rise in alveolar fluid pressure coincided with the onset of pulmonary edema. Our experiments demonstrate that during permeability pulmonary edema with constant capillary hydrostatic pressures, as with hemodynamic edema, alveolar pressure of fluid-filled segments seems to be determined by interstitial pressures.  相似文献   

19.
We studied the effects of regional alveolar hypoxia on permeability pulmonary edema formation. Anesthetized dogs had a bronchial divider placed so that the left lower lobe (LLL) could be ventilated with a hypoxic gas mixture (HGM) while the right lung was continuously ventilated with 100% O2. Bilateral permeability edema was induced with 0.05 ml/kg oleic acid and after 4 h of LLL ventilation with an HGM (n = 9) LLL gross weight was 161 +/- 13 (SE) g compared with 204 +/- 13 (SE) g (P less than 0.05) in the right lower lobe (RLL). Bloodless lobar water and dry weight were also significantly lower in the LLL as compared with the RLL of the study animals. In seven control animals in which the LLL fractional inspired concentration of O2 (FIO2) was 1.0 during permeability edema, there were no differences in gravimetric variables between LLL and RLL. In eight additional animals, pulmonary capillary pressure (Pc), measured by simultaneous occlusion of left pulmonary artery and vein, was not significantly different between LLL FIO2 of 1.0 and 0.05 either before or after pulmonary edema. We conclude that, in the presence of permeability pulmonary edema, regional alveolar hypoxia causes reduction in edema formation. The decreased edema formation during alveolar hypoxia is not due to a reduction in Pc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号