首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was performed to clarify the effects of intermittent exposure to an altitude of 4,500 m with endurance training and detraining on ventilatory chemosensitivity. Seven subjects (sea-level group) trained at sea level at 70% maximal oxygen uptake (VO2 max) for 30 min/day, 5 days/wk for 2 wk, whereas the other seven subjects (altitude group) trained at the same relative intensity (70% altitude VO2 max) in a hypobaric chamber. VO2 max, hypoxic ventilatory response (HVR), and hypercapnic ventilatory response, as an index of central hypercapnic chemosensitivity (HCVR) and as an index of peripheral chemosensitivity (HCVRSB), were measured. In both groups VO2 max increased significantly after training, and a significant loss of VO2 max occurred during 2 wk of detraining. HVR tended to increase in the altitude group but not significantly, whereas it decreased significantly in the sea-level group after training. HCVR and HCVRSB did not change in each group. After detraining, HVR returned to the pretraining level in both groups. These results suggest that ventilatory chemosensitivity to hypoxia is more variable by endurance training and detraining than that to hypercapnia.  相似文献   

2.
This study determined whether "living high-training low" (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8-10 h/day overnight in normobaric hypoxia (approximately 2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (DeltaVE/DeltaSp(O(2)), where VE is minute ventilation and Sp(O(2)) is blood O(2) saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal PCO(2) (PET(CO(2))) and VE were measured during room air breathing at rest. HVR (l. min(-1). %(-1)) was higher (P < 0.05) in LHTLc than in Con at N1 (0.56 +/- 0.32 vs. 0.28 +/- 0.16), N3 (0.69 +/- 0.30 vs. 0.36 +/- 0.24), N10 (0.79 +/- 0.36 vs. 0.34 +/- 0.14), N15 (1.00 +/- 0.38 vs. 0.36 +/- 0.23), and Post (0.79 +/- 0.37 vs. 0.36 +/- 0.26). HVR at N15 was higher (P < 0.05) in LHTLi (0.67 +/- 0.33) than in Con and in LHTLc than in LHTLi. PET(CO(2)) was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia (P < 0.05). No significant differences were observed for VE at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases PET(CO(2)) in normoxia, without change in VE. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.  相似文献   

3.
Endurance and strength training are established as distinct exercise modalities, increasing either mitochondrial density or myofibrillar units. Recent research, however, suggests that mitochondrial biogenesis is stimulated by both training modalities. To test the training "specificity" hypothesis, mitochondrial respiration was studied in permeabilized muscle fibers from 25 sedentary adults after endurance (ET) or strength training (ST) in normoxia or hypoxia [fraction of inspired oxygen (Fi(O(2))) = 21% or 13.5%]. Biopsies were taken from the musculus vastus lateralis, and cycle-ergometric incremental maximum oxygen uptake (VO(2max)) exercise tests were performed under normoxia, before and after the 10-wk training program. The main finding was a significant increase (P < 0.05) of fatty acid oxidation capacity per muscle mass, after endurance and strength training under normoxia [2.6- and 2.4-fold for endurance training normoxia group (ET(N)) and strength training normoxia group (ST(N)); n = 8 and 3] and hypoxia [2.0-fold for the endurance training hypoxia group (ET(H)) and strength training hypoxia group (ST(H)); n = 7 and 7], and higher coupling control of oxidative phosphorylation. The enhanced lipid oxidative phosphorylation (OXPHOS) capacity was mainly (87%) due to qualitative mitochondrial changes increasing the relative capacity for fatty acid oxidation (P < 0.01). Mitochondrial tissue-density contributed to a smaller extent (13%), reflected by the gain in muscle mass-specific respiratory capacity with a physiological substrate cocktail (glutamate, malate, succinate, and octanoylcarnitine). No significant increase was observed in mitochondrial DNA (mtDNA) content. Physiological OXPHOS capacity increased significantly in ET(N) (P < 0.01), with the same trend in ET(H) and ST(H) (P < 0.1). The limitation of flux by the phosphorylation system was diminished after training. Importantly, key mitochondrial adaptations were similar after endurance and strength training, regardless of normoxic or hypoxic exercise. The transition from a sedentary to an active lifestyle induced muscular changes of mitochondrial quality representative of mitochondrial health.  相似文献   

4.
We sought to determine whether apnea-induced cardiovascular responses resulted in a biologically significant temporary O(2) conservation during exercise. Nine healthy men performing steady-state leg exercise carried out repeated apnea (A) and rebreathing (R) maneuvers starting with residual volume +3.5 liters of air. Heart rate (HR), mean arterial pressure (MAP), and arterial O(2) saturation (Sa(O(2)); pulse oximetry) were recorded continuously. Responses (DeltaHR, DeltaMAP) were determined as differences between HR and MAP at baseline before the maneuver and the average of values recorded between 25 and 30 s into each maneuver. The rate of O(2) desaturation (DeltaSa(O(2))/Deltat) was determined during the same time interval. During apnea, DeltaSaO(2)/Deltat had a significant negative correlation to the amplitudes of DeltaHR and DeltaMAP (r(2) = 0.88, P < 0.001); i.e., individuals with the most prominent cardiovascular responses had the slowest DeltaSa(O(2))/Deltat. DeltaHR and DeltaMAP were much larger during A (-44 +/- 8 beats/min, +49 +/- 4 mmHg, respectively) than during R maneuver (+3 +/- 3 beats/min, +30 +/- 5 mmHg, respectively). DeltaSa(O(2))/Deltat during A and R maneuvers was -1.1 +/- 0.1 and -2.2 +/- 0.2% units/s, respectively, and nadir Sa(O(2)) values were 58 +/- 4 and 42 +/- 3% units, respectively. We conclude that bradycardia and hypertension during apnea are associated with a significant temporary O(2) conservation and that respiratory arrest, rather than the associated hypoxia, is essential for these responses.  相似文献   

5.
In humans, 8 h of isocapnic hypoxia causes a progressive rise in ventilation associated with increases in the acute ventilatory responses to hypoxia (AHVR) and hypercapnia (AHCVR). To determine whether 8 h of hyperoxia causes the converse of these effects, three 8-h protocols were compared in 14 subjects: 1) poikilocapnic hyperoxia, with end-tidal PO(2) (PET(O(2))) = 300 Torr and end-tidal PCO(2) (PET(CO(2))) uncontrolled; 2) isocapnic hyperoxia, with PET(O(2)) = 300 Torr and PET(CO(2)) maintained at the subject's normal air-breathing level; and 3) control. Ventilation was measured hourly. AHVR and AHCVR were determined before and 0.5 h after each exposure. During isocapnic hyperoxia, after an initial increase, ventilation progressively declined (P < 0.01, ANOVA). After exposure to hyperoxia, 1) AHVR declined (P < 0.05); 2) ventilation at fixed PET(CO(2)) decreased (P < 0.05); and 3) air-breathing PET(CO(2)) increased (P < 0.05); but 4) no significant changes in AHCVR or intercept were demonstrated. In conclusion, 8 h of hyperoxia have some effects opposite to those found with 8 h of hypoxia, indicating that there may be some "acclimatization to hypoxia" at normal sea-level values of PO(2).  相似文献   

6.
In humans exposed to 8 h of isocapnic hypoxia, there is a progressive increase in ventilation that is associated with an increase in the ventilatory sensitivity to acute hypoxia. To determine the relative roles of lowered arterial PO2 and oxygen content in generating these changes, the acute hypoxic ventilatory response was determined in 11 subjects after four 8-h exposures: 1) protocol IH (isocapnic hypoxia), in which end-tidal PO2 was held at 55 Torr and end-tidal PCO2 was maintained at the preexposure value; 2) protocol PB (phlebotomy), in which 500 ml of venous blood were withdrawn; 3) protocol CO, in which carboxyhemoglobin was maintained at 10% by controlled carbon monoxide inhalation; and 4) protocol C as a control. Both hypoxic sensitivity and ventilation in the absence of hypoxia increased significantly after protocol IH (P < 0.001 and P < 0.005, respectively, ANOVA) but not after the other three protocols. This indicates that it is the reduction in arterial PO2 that is primarily important in generating the increase in the acute hypoxic ventilatory response in prolonged hypoxia. The associated reduction in arterial oxygen content is unlikely to play an important role.  相似文献   

7.
This study investigated whether changing sympathetic activity, acting via beta-receptors, might induce the progressive ventilatory changes observed in response to prolonged hypoxia. The responses of 10 human subjects to four 8-h protocols were compared: 1) isocapnic hypoxia (end-tidal PO2 = 50 Torr) plus 80-mg doses of oral propranolol; 2) isocapnic hypoxia, as in protocol 1, with oral placebo; 3) air breathing with propranolol; and 4) air breathing with placebo. Exposures were conducted in a chamber designed to maintain end-tidal gases constant by computer control. Ventilation (VE) was measured at regular intervals throughout. Additionally, the subjects' ventilatory hypoxic sensitivity and their residual VE during hyperoxia (5 min) were assessed at 0, 4, and 8 h by using a dynamic end-tidal forcing technique. beta-Blockade did not significantly alter either the rise in VE seen during 8 h of isocapnic hypoxia or the changes observed in the acute hypoxic ventilatory response and residual VE in hyperoxia over that period. The results do not provide evidence that changes in sympathetic activity acting via beta-receptors play a role in the mediation of ventilatory changes observed during 8 h of isocapnic hypoxia.  相似文献   

8.
We utilized selective carotid body (CB) perfusion while changing inspired O2 fraction in arterial isocapnia to characterize the non-CB chemoreceptor ventilatory response to changes in arterial PO2 (PaO2) in awake goats and to define the effect of varying levels of CB PO2 on this response. Systemic hyperoxia (PaO2 greater than 400 Torr) significantly increased inspired ventilation (VI) and tidal volume (VT) in goats during CB normoxia, and systemic hypoxia (PaO2 = 29 Torr) significantly increased VI and respiratory frequency in these goats. CB hypoxia (CB PO2 = 34 Torr) in systemic normoxia significantly increased VI, VT, and VT/TI; the ventilatory effects of CB hypoxia were not significantly altered by varying systemic PaO2. We conclude that ventilation is stimulated by systemic hypoxia and hyperoxia in CB normoxia and that this ventilatory response to changes in systemic O2 affects the CB O2 response in an additive manner.  相似文献   

9.
Andean high-altitude (HA) natives have a low (blunted) hypoxic ventilatory response (HVR), lower effective alveolar ventilation, and lower ventilation (VE) at rest and during exercise compared with acclimatized newcomers to HA. Despite blunted chemosensitivity and hypoventilation, Andeans maintain comparable arterial O(2) saturation (Sa(O(2))). This study was designed to evaluate the influence of ancestry on these trait differences. At sea level, we measured the HVR in both acute (HVR-A) and sustained (HVR-S) hypoxia in a sample of 32 male Peruvians of mainly Quechua and Spanish origins who were born and raised at sea level. We also measured resting and exercise VE after 10-12 h of exposure to altitude at 4,338 m. Native American ancestry proportion (NAAP) was assessed for each individual using a panel of 80 ancestry-informative molecular markers (AIMs). NAAP was inversely related to HVR-S after 10 min of isocapnic hypoxia (r = -0.36, P = 0.04) but was not associated with HVR-A. In addition, NAAP was inversely related to exercise VE (r = -0.50, P = 0.005) and ventilatory equivalent (VE/Vo(2), r = -0.51, P = 0.004) measured at 4,338 m. Thus Quechua ancestry may partly explain the well-known blunted HVR (10, 35, 36, 57, 62) at least to sustained hypoxia, and the relative exercise hypoventilation at altitude of Andeans compared with European controls. Lower HVR-S and exercise VE could reflect improved gas exchange and/or attenuated chemoreflex sensitivity with increasing NAAP. On the basis of these ancestry associations and on the fact that developmental effects were completely controlled by study design, we suggest both a genetic basis and an evolutionary origin for these traits in Quechua.  相似文献   

10.
Our objective was to test the hypothesis that exposure to prolonged hypoxia results in altered responsiveness to chemoreceptor stimulation. Acclimatization to hypoxia occurs rapidly in the awake goat relative to other species. We tested the sensitivity of the central and peripheral chemoreceptors to chemical stimuli before and after 4 h of either isocapnic or poikilocapnic hypoxia (arterial PO2 40 Torr). We confirmed that arterial PCO2 decreased progressively, reaching a stable value after 4 h of hypoxic exposure (poikilocapnic group). In the isocapnic group, inspired minute ventilation increased over the same time course. Thus, acclimatization occurred in both groups. In goats, isocapnic hypoxia did not result in hyperventilation on return to normoxia, whereas poikilocapnic hypoxia did cause hyperventilation, indicating a different mechanism for acclimatization and the persistent hyperventilation on return to normoxia. Goats exposed to isocapnic hypoxia exhibited an increased slope of the CO2 response curve. Goats exposed to poikilocapnic hypoxia had no increase in slope but did exhibit a parallel leftward shift of the CO2 response curve. Neither group exhibited a significant change in response to bolus NaCN injections or dopamine infusions after prolonged hypoxia. However, both groups demonstrated a similar significant increase in the ventilatory response to subsequent acute exposure to isocapnic hypoxia. The increase in hypoxic ventilatory sensitivity, which was not dependent on the modality of hypoxic exposure (isocapnic vs. poikilocapnic), reinforces the key role of the carotid chemoreceptors in ventilatory acclimatization to hypoxia.  相似文献   

11.
The purpose of this study was to compare chemoresponses following two different intermittent hypoxia (IH) protocols in humans. Ten men underwent two 7-day courses of poikilocapnic IH. The long-duration IH (LDIH) protocol consisted of daily 60-min exposures to normobaric 12% O(2). The short-duration IH (SDIH) protocol comprised twelve 5-min bouts of 12% O(2), separated by 5-min bouts of room air, daily. Isocapnic hypoxic ventilatory response (HVR) was measured daily during the protocol and 1 and 7 days following. Hypercapnic ventilatory response (HCVR) and CO(2) threshold and sensitivity (by the modified Read rebreathing technique) were measured on days 1, 8, and 14. Following 7 days of IH, the mean HVR was significantly increased from 0.47 +/- 0.07 and 0.47 +/- 0.08 to 0.70 +/- 0.06 and 0.79 +/- 0.06 l.min(-1).%Sa(O(2))(-1) (LDIH and SDIH, respectively), where %Sa(O(2)) is percent arterial oxygen saturation. The increase in HVR reached a plateau after the third day. One week post-IH, HVR values were unchanged from baseline. HCVR increased from 3.0 +/- 0.4 to 4.0 +/- 0.5 l.min(-1).mmHg(-1). In both the hyperoxic and hypoxic modified Read rebreathing tests, the slope of the CO(2)/ventilation plot was unchanged by either intervention, but the CO(2)/ventilation curve shifted to the left following IH. There were no correlations between the changes in response to hypoxia and hypercapnia. There were no significant differences between the two IH protocols for any measures, indicating that comparable changes in chemoreflex control occur with either protocol. These results also suggest that the two methods of measuring CO(2) response are not completely concordant and that the changes in CO(2) control do not correlate with the increase in the HVR.  相似文献   

12.
The sensation of increased respiratory resistance or effort is likely to be important for the initiation of alerting or arousal responses, particularly in sleep. Hypoxia, through its central nervous system-depressant effects, may decrease the perceived magnitude of respiratory loads. To examine this, we measured the effect of isocapnic hypoxia on the ability of 10 normal, awake males (mean age = 24.0 +/- 1.8 yr) to magnitude-scale five externally applied inspiratory resistive loads (mean values from 7.5 to 54.4 cmH(2)O. l(-1). s). Each subject scaled the loads during 37 min of isocapnic hypoxia (inspired O(2) fraction = 0.09, arterial O(2) saturation of approximately 80%) and during 37 min of normoxia, using the method of open magnitude numerical scaling. Results were normalized by modulus equalization to allow between-subject comparisons. With the use of peak inspiratory pressure (PIP) as the measure of load stimulus magnitude, the perception of load magnitude (Psi) increased linearly with load and, averaged for all loaded breaths, was significantly lower during hypoxia than during normoxia (20.1 +/- 0.9 and 23.9 +/- 1.3 arbitrary units, respectively; P = 0. 048). Psi declined with time during hypoxia (P = 0.007) but not during normoxia (P = 0.361). Our result is remarkable because PIP was higher at all times during hypoxia than during normoxia, and previous studies have shown that an elevation in PIP results in increased Psi. We conclude that sustained isocapnic hypoxia causes a progressive suppression of the perception of the magnitude of inspiratory resistive loads in normal subjects and could, therefore, impair alerting or arousal responses to respiratory loading.  相似文献   

13.
The purpose of this study was 1) to test the hypothesis that ventilation and arterial oxygen saturation (Sa(O2)) during acute hypoxia may increase during intermittent hypoxia and remain elevated for a week without hypoxic exposure and 2) to clarify whether the changes in ventilation and Sa(O2) during hypoxic exercise are correlated with the change in hypoxic chemosensitivity. Six subjects were exposed to a simulated altitude of 4,500 m altitude for 7 days (1 h/day). Oxygen uptake (VO2), expired minute ventilation (VE), and Sa(O2) were measured during maximal and submaximal exercise at 432 Torr before (Pre), after intermittent hypoxia (Post), and again after a week at sea level (De). Hypoxic ventilatory response (HVR) was also determined. At both Post and De, significant increases from Pre were found in HVR at rest and in ventilatory equivalent for O2 (VE/VO2) and Sa(O2) during submaximal exercise. There were significant correlations among the changes in HVR at rest and in VE/VO2 and Sa(O2) during hypoxic exercise during intermittent hypoxia. We conclude that 1 wk of daily exposure to 1 h of hypoxia significantly improved oxygenation in exercise during subsequent acute hypoxic exposures up to 1 wk after the conditioning, presumably caused by the enhanced hypoxic ventilatory chemosensitivity.  相似文献   

14.
Lymnaea stagnalis were exposed to hypoxic and chemical challenges while ventilation, heart rate and metabolism were monitored. Hypoxia increased ventilatory behavior, but this response was eliminated by immersion in 0.75 mM nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7 NI). 7 NI also suppressed ventilatory behavior under normoxia. 10.0 mM L-arginine (ARG, the NOS substrate) increased ventilatory behavior under normoxia, but dampened the hypoxic response. The heart-rate response to NOS inhibition exhibited dose-dependent contradictory characteristics. Under both normoxia and hypoxia 0.25 mM 7 NI increased heart rate, while 0.75 mM 7 NI suppressed it. The effect of 0.50 mM 7 NI depended on whether normoxia or hypoxia was coincident; under normoxia 0.50 mM 7 NI increased heart rate, while under hypoxia this concentration suppressed heart rate. Exposure to ARG did not elicit dose-dependent contradictory responses. Heart rate increased when treated with 10.0 mM ARG under normoxia and hypoxia, while 1.0 mM ARG increased heart rate only under hypoxia. Metabolic responses to NOS inhibition also exhibited dose-dependent contradictory changes. V.O2 decreased over 60% in response to 0.75 mM 7 NI, and baseline V.O2 was restored when exposure ceased. In contrast, 0.25 mM 7 NI increased V.O2 10%, and the increase continued after exposure ceased. 0.50 mM 7 NI decreased V.O2 40%, but V.O2 increased when exposure ceased. ARG had only the effect of increasing V.O2, and only at 10.0 mM concentration. Based on these results and on NO's known role as a neuromodulator, we conclude that the cardio-respiratory responses to hypoxia are, in part, mediated by NO.  相似文献   

15.
In 10 normal young adults, ventilation was evaluated with and without pretreatment with aminophylline, an adenosine blocker, while they breathed pure O2 1) after breathing room air and 2) after 25 min of isocapnic hypoxia (arterial O2 saturation 80%). With and without aminophylline, 5 min of hyperoxia significantly increased inspiratory minute ventilation (VI) from the normoxic base line. In control experiments, with hypoxia, VI initially increased and then declined to levels that were slightly above the normoxic base line. Pretreatment with aminophylline significantly attenuated the hypoxic ventilatory decline. During transitions to pure O2 (cessation of carotid bodies' output), VI and breathing patterns were analyzed breath by breath with a moving-average technique, searching for nadirs before and after hyperoxia. On placebo days, at the end of hypoxia, hyperoxia produced nadirs that were significantly lower than those observed with room-air breathing and also significantly lower than when hyperoxia followed normoxia, averaging, respectively, 6.41 +/- 0.52, 8.07 +/- 0.32, and 8.04 +/- 0.39 (SE) l/min. This hypoxic depression was due to significant decrease in tidal volume and prolongation of expiratory time. Aminophylline partly prevented these alterations in breathing pattern; significant posthypoxic ventilatory depression was not observed. We conclude that aminophylline attenuated hypoxic central depression of ventilation, although it does not affect hyperoxic steady-state hyperventilation. Adenosine may play a modulatory role in hypoxic but not in hyperoxic ventilation.  相似文献   

16.
This study tested the hypothesis that the extent of the decrement in (.)Vo(2max) and the respiratory response seen during maximal exercise in moderate hypobaric hypoxia (H; simulated 2,500 m) is affected by the hypoxia ventilatory and hypercapnia ventilatory responses (HVR and HCVR, respectively). Twenty men (5 untrained subjects, 7 long distance runners, 8 middle distance runners) performed incremental exhaustive running tests in H and normobaric normoxia (N) condition. During the running test, (.)Vo(2), pulmonary ventilation (Ve) and arterial oxyhemoglobin saturation (Sa(O(2))) were measured, and in two ventilatory response tests performed during N, a rebreathing method was used to evaluate HVR and HCVR. Mean HVR and HCVR were 0.36 +/- 0.04 and 2.11 +/- 0.2 l.min(-1).mmHg(-1), respectively. HVR correlated significantly with the percent decrements in (.)Vo(2max) (%d(.)Vo(2max)), Sa(O(2)) [%dSa(O(2)) = (N-H).N(-1).100], and (.)Ve/(.)Vo(2) seen during H condition. By contrast, HCVR did not correlate with any of the variables tested. The increment in maximal Ve between H and N significantly correlated with %d(.)Vo(2max). Our findings suggest that O(2) chemosensitivity plays a significant role in determining the level of exercise hyperventilation during moderate hypoxia; thus, a higher O(2) chemosensitivity was associated with a smaller drop in (.)Vo(2max) and Sa(O(2)) under those conditions.  相似文献   

17.
We measured ventilation in nine young adults while they breathed pure O2 after breathing room air and after 5 and 25 min of hypoxia. With isocapnic hypoxia (arterial O2 saturation 80 +/- 2%) mean ventilation increased at 5 min and then declined, so that at 25 min values did not differ from those on room air. After 3 min of O2 breathing, ventilation was greater than that on room air or after 25 min of isocapnic hypoxia, whether the hyperoxia had been preceded by hypoxia or normoxia. During transitions to pure O2 breathing, ventilation was analyzed breath by breath with a moving average technique, searching for nadirs before and after increases in PO2. After both 5 and 25 min of hypoxia, O2 breathing was associated with transient depressions of ventilation, which were greater after 25 min than after 5 min. Significant depressions were not observed when hyperoxia followed room air breathing, and O2-induced nadirs after hypoxia were lower than those observed during room air breathing. O2 transiently depressed ventilation after hypoxia but not after room air breathing. These results suggest that the normal ventilatory response to isocapnic hypoxia has two components, an excitatory one from peripheral chemoreceptors, which is turned off by O2 breathing, and a slower inhibitory one, probably of central origin, which is affected less promptly by O2 breathing.  相似文献   

18.
Adaptation to intermittent hypoxia can enhance a hypoxic ventilatory response (HVR) in healthy humans. Naturally occurring oscillations in blood dopamine (DA) level may modulate these responses. We have measured ventilatory response to hypoxia relative to blood DA concentration and its precursor DOPA before and after a 2-week course of intermittent hypoxic training (IHT). Eighteen healthy male subjects (mean 22.8+/-2.1 years old) participated in the study. HVRs to isocapnic, progressive, hypoxic rebreathing were recorded and analyzed using piecewise linear approximation. Rebreathing lasted for 5-6 min until inspired O2 reached 8 to 7%. IHT consisted of three identical daily rebreathing sessions separated by 5-min breaks for 14 consecutive days. Before and after the 2-week course of IHT, blood was sampled from the antecubital vein to measure DA and DOPA content. The investigation associated pretraining high blood DA and DOPA values with low HVR (r = -0.66 and -0.75, respectively), elevated tidal volume (r = 0.58 and 0.37) and vital capacity (r = 0.69 and 0.58), and reduced respiratory frequency (r = -0.89 and -0.82). IHT produced no significant change in ventilatory responses to mild hypoxic challenge (Peto2 from 110 to 70-80 mm Hg; 1 mm Hg = 133.3 Pa) but elicited a 96% increase in ventilatory response to severe hypoxia (from 70-80 to 45 mm Hg). Changes in HVRs were not accompanied by statistically significant shifts in blood DA content (24% change), although a twofold increase in DOPA concentration was observed. Individual subject's changes in DA and DOPA content were not correlated with HVR changes when these two parameters were evaluated in relation to the IHT. We hypothesize that DA flowing to the carotid body through the blood may provoke DA autoreceptor-mediated inhibition of endogenous DA synthesis-release, as shown in our baseline data.  相似文献   

19.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

20.
Exposing newborn rats to postnatal hyperoxia (60% O2) for 1-4 wk attenuates the ventilatory and phrenic nerve responses to acute hypoxia in adult rats. The goal of this research was to increase our understanding of the carotid chemoreceptor afferent neural input in this depressed response with different durations of postnatal hyperoxic exposure. Rats were exposed from a few days before birth to 1, 2, or 4 wk of 60% O2 and studied after 3-5 mo in normoxia. The rats were anesthetized with urethane. Whole carotid sinus nerve (CSN) responses to NaCN (40 microg/kg iv), 10 s of asphyxia and acute isocapnic hypoxia (arterial Po2 45 Torr) were determined. Mean CSN responses to stimuli after postnatal hyperoxia were reduced compared with controls. Responses in rats exposed to 1 wk of postnatal hyperoxia were less affected than those exposed to 2 and 4 wk of hyperoxia, which were equivalent to each other. These studies illustrate the importance of normoxia during the first 2 wk of life in development of carotid chemoreceptor afferent function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号