首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
The current debate about the safety of genetically modified food includes some important scientific issues where more scientific data would aid the robustness of safety evaluation. One example is the possibility of gene transfer, especially from genetically modified plant material.  相似文献   

2.
Scaffold-based bone engineering by using genetically modified cells   总被引:1,自引:0,他引:1  
Hutmacher DW  Garcia AJ 《Gene》2005,347(1):1-10
The first generation of clinically applied tissue engineering concepts in the area of skin, cartilage and bone marrow regeneration was based on the isolation, expansion and implantation of cells from the patient's own tissue. Although successful in selective treatments, tissue engineering needs to overcome major challenges to allow widespread clinical application with predictable outcomes. One challenge is to present the cells in a matrix to the implantation site to allow the cells to survive the wound healing contraction forces, tissue remodeling in certain tissues such as bone and biomechanical loading. Hence, several tissue engineering strategies focus on the development of load-bearing scaffold/cell constructs. From a cell source point of view, bone engineers face challenges to isolate and expand cells with the highest potential to form osseous tissue along with harvesting tissue without extensive donor site morbidity. A major hurdle to tissue engineering is de-differentiation and limited ability to control cell phenotype following in vitro expansion. Due to early successes with genetic engineering, bone tissue engineers have used different strategies to genetically alter various types of mesenchymal cells to enhance the mineralization capacity of tissue-engineered scaffold/cell constructs. Although the development of multi-component scaffold/osteogenic cell constructs requires a combination of interdisciplinary research strategies, the following review is limited to describe the general aspects of bone engineering and to present overall directions of technology platforms, which include a genetic engineering component. This paper reviews the most recent work in the field and discusses the concepts developed and executed by a collaborative effort of the multi-disciplinary teams of the two authors.  相似文献   

3.
肿瘤是机体在各种致瘤因子作用下,局部组织细胞异常增生所形成的赘生物。肿瘤治疗一直是临床上的一个难题,而放疗、化疗和手术等常规的肿瘤治疗方法均具有明显的局限性。早期研究发现某些厌氧菌或兼性厌氧菌具有抗肿瘤效应,例如兼性厌氧菌鼠伤寒沙门氏菌可以通过某些机制选择性定殖于肿瘤并抑制肿瘤生长,其应用于肿瘤治疗具有许多潜在的优势。过去的一二十年里,已有不少研究者通过遗传操作减弱沙门菌毒力,提高其定殖肿瘤的靶向性,或以减毒沙门菌作为载体向肿瘤靶向递呈各种治疗分子,并在许多动物试验中观察到遗传改造沙门菌的良好抗肿瘤效应。随着沙门菌抗肿瘤研究的不断深入,应用遗传改造的沙门菌有希望成为一条更有效的肿瘤治疗途径。本文将从沙门菌的抗肿瘤机制、遗传改造的沙门菌介导肿瘤治疗的研究进展和目前研究存在的问题等方面进行综述。  相似文献   

4.
Although pronuclear DNA micro-injection has long been the most reliable method to produce transgenic pigs, the efficiency of production of transgenic offspring is generally plagued by 1% of the DNA-injected embryos. Therefore, a problem with this method is the need for large numbers of pronuclear stage embryos. One great advancement would be the use of in vitro-matured (IVM) oocytes for the purpose of transgenic pig production. High developmental competence of IVM oocytes was proven by transfer of parthenogenetic IVM oocytes. A combined method of sperm vectors with the IVM of oocytes would make the production of transgenic pigs remarkably feasible. Rate of blastocyst formation following intracytoplasmic sperm injection (ICSI) by frozen sperm was over 20%, and transgene was expressed in approximately 50% of blastocysts generated. Somatic cell nuclear transfer would enable more efficient and sophisticated genetic modification of the pig. Simultaneous comparison between two nuclear transfer methods by electro-fusion and intracytoplasmic injection revealed clear differences in the pattern of nuclear remodeling and development of the reconstructed embryos. To specify the donor cell type that allows efficient genetic modification and easy reprogramming or to establish such cell lines is a critical issue in pig cloning. We tested pre-adipocytes from the subcutaneous adipose tissue of adult pigs for nuclear transfer. Cell cycle synchronization by differentiation induction is unique to the pre-adipocytes. Frequency of apoptosis was low in the cells synchronized by differentiation induction compared with other synchronization methods, including serum starvation, confluency, and chemical treatment. It would be of great worth if cryopreserved clone embryos were available. We have demonstrated that cryopreservation of in vitro-produced porcine embryos as well as clone blastocysts is possible by our unique method.  相似文献   

5.
Adoptive transfer of T lymphocytes genetically modified with antigen-specific T cell receptor (TCR) constitutes a promising approach for the treatment of malignant tumors and virus infections. One of the challenges in this field of TCR gene therapy is TCR mispairing defining the incorrect pairing between an introduced TCR α or β chain and an endogenous TCR β or α chain, which results in diluted surface expression of the therapeutic TCR αβ. Although there is currently no clinical evidence for TCR mispairing-induced autoreactivity, the generation of autoreactive TCRs upon TCR mispairing cannot be excluded. So it is important to detect TCR mispairing to evaluate the efficiency of TCR gene therapy. Currently there is no available quantitative assay for the measurement of TCR mispairing. Fluorescence resonance energy transfer (FRET) is a powerful approach for identifying biologically relevant molecular interactions with high spatiotemporal resolution. In this study, we described the method of FRET for the measurement of TCR mispairing. It was found that the average FRET efficiency was 12.2 ± 7.5% in HeLa cells and 8.4 ± 3.3% in Jurkat cells (P = 0.026605). The reduction of FRET efficiency in lymphocytes reflected the presence of mispaired TCRs, indicating there were ~30% TCR mispairing in lymphocytes. This study provides a quantitative intracellular assay that can be used to detect TCR mispairing in genetically modified T lymphocytes.  相似文献   

6.
Recombinant adeno-associated virus(rAAV) vectors have been extensively used for experimental gene therapy of inherited human diseases.Several advantages,such as simple vector construction,high targeting frequency by homologous recombination,and applicability to many cell types,make rAAV an attractive approach for targeted genome editing.Combined with cloning by somatic cell nuclear transfer(SCNT),this technology has recently been successfully adapted to generate gene-targeted pigs as models for cystic fibrosis, hereditary tyrosinemia type 1,and breast cancer.This review summarizes the development of rAAV for targeted genome editing in mammalian cells and provides strategies for enhancing the rAAV-mediated targeting frequency by homologous recombination.We discuss current development and application of the rAAV vectors for targeted genome editing in porcine primary fibroblasts,which are subsequently used as donor cells for SCNT to generate cloned genetically designed pigs and provide positive perspectives for the generation of gene-targeted pigs with rAAV in the future.  相似文献   

7.
Development of the techniques for nuclear transfer in pigs   总被引:6,自引:0,他引:6  
Nuclear transfer in pigs was developed in the late 1980's. The techniques were based on previous studies in frogs, mice and cattle. Within stage nuclear transfer, pronuclear exchange, was followed by the transfer of nuclei from cleavage stage embryos. While these have resulted in term development, many problems remain. Recently progress on the problem of inadequate oocyte activation has been made and now there can be a refocus on the other aspects of the nuclear transfer procedure. The emphasis in developing the cloning/transgenic technology is easily justified, not so much by the ability to produce genetically identical animals for production agriculture, but for the potential to use a cell line that can be genetically engineered prior to the nuclear transfer. Pigs with specific genetic modifications will have a great impact on production agriculture as well as human medicine.  相似文献   

8.
Manipulation of the pig genome has the potential to improve pig production and offers powerful biomedical applications. Genetic manipulation of mammals has been possible for over two decades, but the technology available has proven both difficult and inefficient. The development of new techniques to enhance efficiency and overcome the complications of random insertion is of importance. Nuclear transfer combined with homologous recombination provides a possible solution: precise genetic modifications in the pig genome may be induced via homologous recombination, and viable offspring can be produced by nuclear transfer using cultured transfected cell lines. The technique is still ineffective, but it is believed to have immense potential. One area that would benefit from the technology is that of xenotransplantation: transgenic pigs are expected to be available as organ donors in the foreseeable future.  相似文献   

9.
This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to produce transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.  相似文献   

10.
11.
In the literature, the reports on the effects of a genetically modified (GM) diet are scanty and heterogeneous; in particular, no direct evidence has so far been reported that GM food may affect human or animal health. Hepatocytes represent a suitable model for monitoring the effects of a GM diet, the liver potentially being a primary target. In a previous study, we demonstrated that some modifications occur in hepatocyte nuclei of mice fed on GM soybean. In order to elucidate whether such modifications can be reversed, in the present study, 3 months old mice fed on GM soybean since their weaning were submitted to a diet containing wild type soybean, for one month. In parallel, to investigate the influence of GM soybean on adult individuals, mice fed on wild type soybean were changed to a GM diet, for the same time. Using immunoelectron microscopy, we demonstrated that a one-month diet reversion can influence some nuclear features in adult mice, restoring typical characteristics of controls in GM-fed animals, and inducing in control mice modifications similar to those observed in animals fed on GM soybean from weaning. This suggests that the modifications related to GM soybean are potentially reversible, but also that some modifications are inducible in adult organisms in a short time.  相似文献   

12.
13.
The aim of the present study was to determine whether porcine preadipocytes can be efficient donor cells for somatic cell nuclear transfer (SCNT) in pigs. Primary culture of porcine preadipocytes was established by de-differentiating mature fat cells taken from an adult pig. The cell cycle of the preadipocytes could be synchronized by serum starvation for 1 day, with a higher efficiency than control fetal fibroblasts. Incidence of premature chromosome condensation following nuclear transfer (NT) of preadipocytes was as high as that observed after NT with fetal fibroblasts. In vitro developmental rate of the NT embryos reconstructed with preadipocyte was equivalent to that of the fetal fibroblast derived embryos. Transfer of 732 NT embryos with preadipocytes to five recipients gave rise to five cloned piglets. These data demonstrate that preadipocyites collected from an adult pig are promising nuclear donor cells for pig cloning.  相似文献   

14.
Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.  相似文献   

15.
A combination of nanotopographical cues and surface modification of collagen and fibronectin is a potential platform in primordial germ cells (PGCs) differentiation. In the present study, the synergistic effect of nanotopography and surface modification on differentiation of nuclear transfer embryonic stem cells (nt-ESCs) toward PGC lineage was investigated. In order to achieve this goal, poly-anyline (PANi) was mix within poly-l-lactic acid (PLLA). Afterward, the random composite mats were fabricated using PLLA and PANi mix solution. The nanofiber topography notably upregulated the expressions of prdm14, mvh and c-kit compared with tissue culture polystyrene (TCP). Moreover, the combination of nanofiber topography and surface modification resulted in more enhancement of PGCs differentiation compared with non-modified nanofibrous scaffold. Additionally, gene expression results showed that mvh and c-kit were expressed at higher intensity in cells exposed to collagen and fibronectin rather than collagen or fibronectin solitary. These results demonstrated the importance of combined effect of collagen and fibronectin in order to develop a functional extracellular matrix (ECM) mimic in directing stem cell fate and the potential of such biofunctional scaffolds for treatment of infertility.  相似文献   

16.
Background aimsThe immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSC) could prove to be a potential therapeutic approach for prolongation of survival of cell xenotransplantation. Adipose (Ad) MSC from genetically modified pigs could be an abundant source of pig donor-specific MSC.MethodsPig (p) MSC were isolated from adipose tissue of α1,3-galactosyltransferase gene knock-out pigs transgenic for human (h) CD46 (GTKO/hCD46), a potential source of islets. After characterization with differentiation and flow cytometry (FCM), AdMSC were compared with bone marrow (BM) MSC of the same pig and human adipose-derived (hAd) MSC. The modulation of human peripheral blood mononuclear cell (hPBMC) responses to GTKO pig aortic endothelial cells (pAEC) by different MSC was compared by measuring 3H-thymidine uptake. The supernatants from the AdMSC cultures were used to determine the role of soluble factors.ResultsGTKO/hCD46 pAdMSC (i) did not express galactose-α1,3-galactose (Gal) but expressed hCD46, (ii) differentiated into chondroblasts, osteocytes and adipocytes, (iii) expressed stem cell markers, (iv) expressed lower levels of Swine Leucocyte Antigen I (SLAI), Swine Leucocyte Antigen II DR (SLAIIDR) and CD80 than pAEC before and after pig interferon (IFN)-γ stimulation. The proliferative responses of hPBMC to GTKO/hCD46 pAdMSC and hAdMSC stimulators were similar, and both were significantly lower than to GTKO pAEC (P < 0.05). The proliferation of hPBMC to GTKO pAEC was equally suppressed by GTKO/hCD46 pAdMSC and hAdMSC (P > 0.05). The supernatant from GTKO/hCD46 pAdMSC did not suppress the human xenoresponse to GTKO pAEC, which was cell–cell contact-dependent.ConclusionsInitial evidence suggests that genetically modified pAdMSC function across the xenogeneic barrier and may have a role in cellular xenotransplantation.  相似文献   

17.
The objective of this work was to obtain cloned pig offspring by uterine transfer of blastocysts produced by zona-free manipulation. We started by defining the most suitable culture media for growing pig nuclear transfer embryos produced by zona-free micromanipulation comparing NCSU-23aa with Synthetic Oviduct Fluid (SOFaa) and with in vivo culture in the sheep oviduct. We found that parthenogenetic development to day 7 blastocyst in NCSU-23aa and sheep oviduct was significantly superior as compared to SOFaa (61.8%, 64% and 42.4 respectively) although blastocyst cell number was higher in the latter. Interestingly, when we compared the two media for the culture of nuclear transfer (NT) embryos derived from 3 different donor cell lines, we observed lower rates of development with NCSU-23aa (from 24.5% to 32.4%) while with SOFaa the development was significantly higher for two donor cell lines as compared to the third (44.4%, 48.9% and 20.6% respectively). A total of 244 blastocysts grown in SOFaa were transferred in four synchronized sows on day 5 or 6 of development. Two recipients farrowed 6 and 8 piglets corresponding to an efficiency of development to term of 8% and 16% of the transferred embryos respectively. Eleven pigs are now 10 month of age and those that have reached puberty have been proven to be fertile. Finally, this is the first report on the production of cloned pigs derived from the transfer of NT embryos at the blastocyst stage.  相似文献   

18.
The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.  相似文献   

19.
赵艳  李燕燕 《遗传》2013,35(12):1360-1367
安全性评价是转基因农作物商品化应用的必要环节。组学技术能在转录物、蛋白质、代谢物水平上对转基因农作物进行无偏倚的安全性评价。文章综述了近10年来应用转录组学、蛋白质组学和代谢物组学技术评价转基因农作物非预期效应的研究进展, 结果表明在转基因农作物非预期变异中, 环境因素(种植地点和季节)和基因型差异比转基因本身的影响更大。  相似文献   

20.
In this research, we developed a multiplex polymerase chain reaction (multiplex-PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a consecutive reaction to detect a genetically modified organism (GMO). There are a total of 20 probes for detecting a GMO in a DNA microarray which can be classified into three categories according to their purpose: the first for screening GMO from un-transgenic plants based on the common elements such as promoter, reporter and terminator genes; the second for specific gene confirmation based on the target gene sequences such as herbicide-resistance or insect-resistance genes; the third for species-specific genes which the sequences are unique for different plant species. To ensure the reliability of this method, different kinds of positive and negative controls were used in DNA microarray. Commercial GM soybean, maize, rapeseed and cotton were identified by means of this method and further confirmed by PCR analysis and sequencing. The results indicate that this method discriminates between the GMOs very quickly and in a cost-saving and more time efficient way. It can detect more than 95% of currently commercial GMO plants and the limits of detection are 0.5% for soybean and 1% for maize. This method is proved to be a new method for routine analysis of GMOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号