首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 242 毫秒
1.
酿酒酵母是工业发酵生产乙醇的重要菌种,但是其发酵产物乙醇对酿酒酵母有明显的抑制作用.选育乙醇耐受性酿酒酵母是克服高浓度乙醇的抑制作用,提高乙醇产量的一条重要途径.本文对近年来国内外选育乙醇耐受性酵母的研究作一综述,旨在为乙醇耐受性酵母的选育提供参考.  相似文献   

2.
生物乙醇作为一种可再生的清洁能源,正在引起人们的广泛关注.酿酒酵母是乙醇生产中最常用的发酵菌株,但是乙醇耐受性往往成为限制酿酒酵母菌乙醇产量的重要因素.选育耐受高浓度乙醇的酵母菌株对于提高乙醇产率具有重要意义.然而传统的菌株改良方法具有育种周期长,突变方向不定等缺点.主要综述了近年来国内外对酿酒酵母菌耐受乙醇的分子生物学机理方面的研究成果,进而总结了提高酿酒酵母乙醇耐受性的基因工程、代谢工程.  相似文献   

3.
在燃料乙醇发酵生产过程中,酿酒酵母经常会受到高浓度乙醇的胁迫,导致乙醇转化率和产量降低。面对高浓度乙醇的胁迫,酿酒酵母也具有应对胁迫的应激机制。在对这种应激机制进行了解的基础上,如能提高酿酒酵母对乙醇的耐受性,对于燃料乙醇生产具有重要意义。在高浓度乙醇胁迫下,酿酒酵母细胞会产生一系列保护性物质,如海藻糖、热激蛋白、脯氨酸等,这些物质能够提高酿酒酵母细胞对乙醇的耐受性。海藻糖作为一种重要的碳源、能量贮藏物质,不仅能稳定细胞膜、蛋白质和核酸等大分子物质,还可增强酿酒酵母对高浓度乙醇的耐受性。此外,酿酒酵母还可以产生大量的热激蛋白,增强酿酒酵母的抗逆性。从海藻糖和热激蛋白在乙醇胁迫下对酿酒酵母细胞保护作用的研究方面进行了综述,并对存在的问题进行了讨论与展望。  相似文献   

4.
以木质纤维素为原料生产乙醇,预处理是必需的环节,这一过程中不可避免产生了多种对微生物有抑制作用的化合物,这些抑制物主要有3大类:弱酸、呋喃醛类和酚类化合物。这些化合物影响后续乙醇发酵微生物酿酒酵母(Saccharomyces cerevisiae)的生长及发酵性能,降低了乙醇的得率和产量,是木质纤维素原料大规模生产乙醇的一个主要障碍。以下介绍了3类抑制物的形成及作用机制,并介绍了应对抑制物作用、提高酵母发酵能力的措施及研究进展,包括发酵前预处理原料脱毒、通过进化工程驯化菌种或通过对抑制物耐受性相关基因的代谢工程操作提高酿酒酵母耐受性,及通过发酵过程控制减少抑制物影响等。  相似文献   

5.
酿酒酵母乙醇耐性的分子机制及基因工程改造   总被引:5,自引:0,他引:5  
提高工业微生物对毒性代谢产物及高温等环境胁迫因素的耐受性对工业生产具有重要的意义。发酵过程中产生的乙醇对酵母细胞的生长和代谢都具有较强的抑制作用,是酿酒酵母的重要环境胁迫因素之一。对酿酒酵母乙醇耐性的分子机制的研究可为选育具有较强乙醇耐受性的酵母菌种提供理论基础。近年来,通过细胞全局基因转录分析和基因功能分析,对酿酒酵母乙醇耐性的分子机制有了更多新的认识,揭示了很多新的与乙醇耐性相关的基因,并在此基础上,通过对相关基因进行过量表达或敲除,成功提高了酵母菌的乙醇耐性。以下综述了近年来酵母菌乙醇耐性的生物化学与分子生物学机制的研究进展,以及构建具有较高乙醇耐性的酵母菌的基因工程操作。这些研究不仅加深了对酿酒酵母乙醇耐性的机理认识,也可为高效进行生物转化生产生物质能源奠定理论基础。  相似文献   

6.
燃料乙醇发酵过程中酿酒酵母细胞活性被高浓度乙醇严重抑制而导致发酵提前终止,生产强度严重降低,因此构建同时具有高耐受性、高发酵性能的菌株一直是发酵工业追求的目标。选取酿酒酵母细胞形态调节关键基因小GTP酶家族成员Rho1,构建易错PCR产物文库,以酿酒酵母S288c为出发菌株采取“富集-自然生长-复筛”的筛选策略,成功筛选得到两株乙醇胁迫耐受性与发酵性能均提高的突变株M2和M5。测序发现突变株过表达的Rho1序列出现了3~5个氨基酸的突变和大片段的缺失突变。以300 g/L起始葡萄糖进行乙醇发酵,72 h时,M2和M5的乙醇滴度比对照菌株分别提高了19.4%和22.3%,超高浓度乙醇发酵能力显著提高。本研究为利用蛋白定向进化方法改良酵母菌复杂表型提供了新的作用靶点。  相似文献   

7.
纤维素乙醇是一种低碳清洁的绿色能源,可与传统石油基液体燃料混合使用,具备广阔的应用前景.纤维素乙醇的生产历经木质纤维素预处理、糖化和酿酒酵母发酵等工艺,而预处理过程会产生多种副产物,显著抑制酵母细胞的生长速率和发酵性能.因此,构建抑制剂耐受性酵母底盘细胞,有助于提高纤维素乙醇的生产效率,降低生产成本.针对抑制剂耐受性酵...  相似文献   

8.
【背景】纤维素是生物转化解决能源问题的主要原料之一,其水解物中存在严重影响抑制菌株生长的糠醛,需脱毒才可应用于发酵,提高菌株耐受性是解决纤维素水解液实际生产应用的关键。【目的】酿酒酵母(Saccharomyces cerevisiae)是主要的纤维素水解液发酵工业菌株,但糠醛耐受性较低,通过分子改造获得具有高糠醛耐受性的菌株。【方法】利用新获得的产甘油假丝酵母(Candidaglycerinogenes)的相关抗逆转录因子CgSTB5、CgSEF1和CgCAS5,通过分子技术进行S.cerevisiae改造,考察其对酿酒酵母糠醛耐受性的影响,并尝试应用于未脱毒纤维素乙醇发酵。【结果】单个表达CgSTB5和CgSEF1的酿酒酵母,通过菌株点板实验表明菌株的糠醛耐受性提高25%以上,并且摇瓶发酵结果显示糠醛降解性能明显提高,生长延滞期明显缩短,S.cerevisiae W303/p414-CgSTB5的未脱毒纤维素乙醇发酵生产效率提高12.5%左右。【结论】转录因子CgSTB5和CgSEF1均能对提高酿酒酵母糠醛耐受性起到重要作用,并且有助于提高酿酒酵母菌株未脱毒纤维素乙醇发酵性能。  相似文献   

9.
选育高乙醇耐性的酿酒酵母菌株对提高燃料乙醇的发酵效率具有重要意义.锌指蛋白广泛存在于多种生物中,对基因的转录和翻译起重要的调节作用.利用人工设计的锌指蛋白可定向设计锌指序列及其排列顺序,实现对细胞内多个基因的全局调控.由于与环境胁迫反应相关的基因很多,因此可利用人工锌指蛋白技术获得耐受性提高的微生物重组菌.文中将人工锌指文库转入到酿酒酵母模式菌株S288c,选育了具有高乙醇耐受性的重组菌株M01,并分离了与乙醇耐受性提高相关的人工锌指蛋白表达载体pRS316ZFP-M01,转入工业酿酒酵母Sc4126,在含有不同浓度乙醇的平板上,工业酵母Sc4126的重组菌株表现出显著的耐受性提高.在高糖培养基(250 g/L)条件下进行乙醇发酵,发现重组菌的乙醇发酵效率明显快于野生型,发酵时间提前24 h,且发酵终点乙醇浓度提高6.3%.结果表明人工锌指文库能够提高酵母的乙醇耐受性,为构建发酵性能优良的酵母菌种奠定了基础.  相似文献   

10.
为获得燃料乙醇生产菌株,通过基因工程改造,构建能够利用能源甘蔗汁发酵、乙醇产率高的酿酒酵母工程菌株。即过表达肌醇-3-磷酸合成酶基因ino1,敲除kanMX抗性基因,获得重组菌。对过表达菌株的乙醇耐受性进行分析。利用甘蔗汁进行发酵培养,采用气相色谱(GC)对发酵产物乙醇进行检测。结果显示过表达菌株YI2-1能够耐19%(V/V)的乙醇,利用20oBx甘蔗汁厌氧发酵乙醇积累量为13.10%(V/V),较出发菌提高了8.55%。而过表达菌株YI2-1△KP的最大乙醇积累量为13.17%(V/V),较出发菌提高了9.16%。研究表明通过过表达酿酒酵母ino1基因能够有效提高菌株细胞活力、乙醇耐受性。构建的工程菌可利用甘蔗汁发酵,具有较高的乙醇产量。  相似文献   

11.
利用木质纤维素生产燃料乙醇的过程中,前期预处理所产生的抑制剂会影响酵母的正常生长和后续的发酵过程。为减小抑制剂的影响所采取的一些脱毒策略往往造成糖的损失和生产成本的增加,这在实际生产与经济上是不可行的。因此,具有强的抑制剂耐受性的酿酒酵母菌株对于提高纤维素乙醇产率是十分重要的。近十年来,对于酿酒酵母胁迫耐受机制的研究取得了一些重要的进展,着重介绍目前酿酒酵母对抑制剂耐受机制的研究现状,包括一些关键性基因的表达及代谢通路过程分析等。同时也介绍一些应对抑制剂提高酵母发酵能力的措施。  相似文献   

12.
提高生物能源生产菌株对各种胁迫因素的耐受性对于提高生产过程的经济性和高效生产生物能源具有重要的意义。对酿酒酵母乙醇耐性的分子机制的研究,可揭示影响其耐受性的关键基因,并通过代谢工程操作定向提高酵母菌的乙醇耐受性,从而提高燃料乙醇的生产效率。海藻糖对酵母菌在多种环境胁迫下的细胞活性具有保护作用,但其对乙醇耐性分子机制的研究还不够深入。克隆了自絮凝酵母Saccharomyces cerevisiae flo的海藻糖-6-磷酸合成酶基因TPS1的启动子区域,利用pYES2.0载体骨架,构建了PTPS1启动绿色荧光蛋白EGFP标记基因的报告载体,并转化酿酒酵母ATCC4126。对酵母转化子在含有7%和10%乙醇的生长培养基中的EGFP的表达情况进行相对荧光定量分析,发现PTPS1活性在7%乙醇存在下受到强烈诱导。EGFP表达量对高温和高糖胁迫无明显差别,显示了TPS1启动子对乙醇浓度的特异响应。研究结果表明,絮凝酵母海藻糖的合成是对乙醇胁迫的保护性反应。  相似文献   

13.
酿酒酵母X330高浓度发酵时耐酒精性能的初步研究   总被引:4,自引:0,他引:4  
在完全合成培养基条件下,就渗透压保护剂和营养物质对一株产高浓度酒精的酿酒酵母X330高浓度发酵时耐酒精性能的影响进行了初步研究。结果表明,与渗透压相比,营养缺乏对酿酒酵母高浓度发酵时酒精耐受性能可能起着更为关键和重要的作用。发酵培养基中各营养元素对耐酒精性能的影响不同,由高到低的顺序是酵母抽提物>蛋白胨>硫酸镁>维生素C=磷酸二氢钾>氯化钙=硫酸铵。渗透压保护剂(甘氨酸和脯氨酸)能有效提高菌体酒精耐受性能。当甘氨酸添加浓度为20mmol/L或脯氨酸添加浓度为10mmol/L时,发酵终点酒精浓度最高,菌体于30℃在18%(V/V)酒精冲击下的存活率最大,且均高于对照组(未添加甘氨酸且未添加脯氨酸)水平,但甘氨酸的促进作用强于脯氨酸。  相似文献   

14.
絮凝特性对自絮凝颗粒酵母耐酒精能力的影响及作用机制   总被引:7,自引:2,他引:5  
首次报道絮凝特性提高酵母菌耐酒精能力的现象及其机制。融合株SPSC与其两亲本粟酒裂殖酵母变异株和酿酒酵母变异株于 30℃经 18% (V/V)酒精冲击 7h的存活率分别为 52%、37%和 9%。细胞膜磷脂脂肪酸组成分析表明 ,两絮凝酵母 (融合株SPSC和粟酒裂殖酵母变异株 )的棕榈酸含量均约为非絮凝酵母 (酿酒酵母变异株 )的两倍 ,而棕榈油酸和油酸的含量明显低于后者。研究表明 ,当两絮凝酵母在培养中由于柠檬酸钠的作用 (抑制絮凝体的形成 )而以游离细胞生长存在时 ,其细胞膜磷脂棕榈酸含量显著下降 ,而棕榈油酸和油酸的含量明显增加 ,结果细胞膜磷脂脂肪酸组成特点与酿酒酵母变异株相似 ;而且实验表明 ,絮凝特性的消失伴随菌体耐酒精能力的急剧下降 ,变得与酿酒酵母变异株的水平相当。这些结果提示两絮凝酵母具有较强的耐酒精能力与其细胞膜磷脂脂肪酸组成中含有更高比例的棕榈酸有关。  相似文献   

15.
A set of homozygous diploid deletion mutants of the yeast Saccharomyces cerevisiae was screened for the genes required for tolerance to aliphatic alcohols. The screen identified 137, 122 and 48 deletion mutants sensitive to ethanol, 1-propanol and 1-pentanol, respectively. A number of the genes required for ethanol tolerance were those also required for tolerance to other alcohols. Numerous mutants with defective genes encoding for vacuolar H+ -ATPase (V-ATPase) were cosensitive to these alcohols. A global screening approach of yeast deletion library mutants was useful in elucidating the mechanisms of alcohol tolerance based on different lipophilicities.  相似文献   

16.
乙酸是木质纤维素类生物质水解液中的常见毒性抑制物,选育乙酸耐受性好的酿酒酵母菌株,有利于高效利用木质纤维素类生物质,发酵生产生物燃料和生物基化学品。目前对酿酒酵母抗逆性的研究多集中在转录水平,但对转运RNA (Transfer RNA,tRNA) 在耐受性中的作用研究较少。在对酿酒酵母抗逆性研究过程中发现,一些转运RNA基因在耐受性好的酿酒酵母菌株中转录明显上调。本文深入分析了精氨酸tRNA基因tR(ACG)D和亮氨酸tRNA基因tL(CAA)K过表达对酿酒酵母耐受木质纤维素水解液的影响。结果表明,在4.2 g/L乙酸胁迫条件下进行乙醇发酵时,过表达tL(CAA)K的菌株生长和发酵性能均优于对照酵母菌株,乙醇生产强度比对照菌株提高了29.41%,但过表达tR(ACG)D基因的菌株生长和代谢能力较对照菌株明显降低,体现了不同tRNA的不同调控作用。进一步分析发现,过表达tL(CAA)K的重组酵母菌株乙酸耐受性调控相关基因HAA1、MSN2和MSN4等胁迫耐受性相关转录因子编码基因的转录水平上调。本文的研究为选育高效利用木质纤维素资源进行生物炼制的酵母菌株提供了新的改造策略,也为进一步揭示酿酒酵母tRNA基因表达调控对抗逆性的影响提供了基础。  相似文献   

17.
利用SPT3的定向进化提高工业酿酒酵母乙醇耐受性   总被引:1,自引:0,他引:1  
利用对转录因子的定向进化可对多基因控制的性状进行有效的代谢工程改造。本研究对酿酒酵母负责胁迫相关基因转录的SAGA复合体成分SPT3编码基因进行易错PCR随机突变,并研究了SPT3的定向进化对酿酒酵母乙醇耐性的影响。将SPT3的易错PCR产物连接改造的pYES2.0表达载体并转化酿酒酵母Saccharomyces cerevisiae4126,构建了突变体文库。通过筛选在高浓度乙醇中耐受性提高的突变株,获得了一株在10%(V/V)乙醇中生长较好的突变株M25。该突变株利用125g/L的葡萄糖进行乙醇发酵时,终点乙醇产量比对照菌株提高了11.7%。由此表明,SPT3是对酿酒酵母乙醇耐性进行代谢工程改造的一个重要的转录因子。  相似文献   

18.
AIMS: The present investigation deals with the development of thermotolerant mutant strain of yeast for studying enhanced productivity of ethanol from molasses in a fully controlled bioreactor. METHODS AND RESULTS: The parental culture of Saccharomyces cerevisiae ATCC 26602 was mutated using UV treatment. A single thermotolerant mutant was isolated after extensive screening and optimization, and grown on molasses medium in liquid cultures. The mutant was 1.45-fold improved than its wild parent with respect to ethanol productivity (7.2 g l-1 h-1), product yield (0.44 g ethanol g-1 substrate utilized) and specific ethanol yield (19.0 g ethanol g-1 cells). The improved ethanol productivity was directly correlated with titres of intracellular and extracellular invertase activities. The mutant supported higher volumetric and product yield of ethanol, significantly (P相似文献   

19.
The yeast Saccharomyces cerevisiae exhibits high ethanol tolerance compared with other microorganisms. The mechanism of ethanol tolerance in yeast is thought to be regulated by many genes. To identify some of these genes, we screened for ethanol-sensitive S. cerevisiae strains among a collection of mutants obtained using transposon mutagenesis. Five ethanol-sensitive (ets) mutants were isolated from approximately 7,000 mutants created by transforming yeast cells with a transposon (mTn-lacZ/LEU2)-mutagenized genomic library. Although these mutants grew normally in a rich medium, they could not grow in the same medium containing 6% ethanol. Sequence analysis of the ets mutants revealed that the transposon was inserted in the coding regions of BEM2, PAT1, ROM2, VPS34 and ADA2. We constructed deletion mutants for these genes by a PCR-directed disruption method and confirmed that the disruptants, like the ets mutants, were ethanol sensitive. Thus, these five genes are indeed required for growth under ethanol stress. These mutants were also more sensitive than normal cells to Calcofluor white, a drug that affects cell wall architecture, and Zymolyase, a yeast lytic enzyme containing mainly beta-1,3- glucanase, indicating that the integrity of the cell wall plays an important role in ethanol tolerance in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号