首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In addition to engagement of the T cell receptor-CD3 complex, T lymphocytes can be activated by a variety of cell surface molecules including the approximately 50-kDa surface receptor CD2. While the majority of biochemical signaling elements are triggered by either CD2 or TcR-CD3 receptors, a small number of proteins are engaged by only one receptor. Recently, p62(dok) (Dok1), a member of the Dok family of adapter molecules, has been reported to be activated by CD2 and not by CD3 engagement. Here we have examined the role of p62(dok) in CD2-dependent signaling in Jurkat T cells. As previously reported, we find that ligation of the CD2 molecule by mitogenic pairs of anti-CD2 mAbs led to phosphorylation of p62(dok). While CD2-induced p62(dok) tyrosine phosphorylation was independent of both the p36/38 membrane adapter protein linker of activated T cells (LAT) and the ZAP70/Syk family of kinases, it was dependent upon the Src family of kinases including Lck and Fyn. We find further that CD2 engagement induced the association of tyrosine-phosphorylated p62(dok) to Crk-L. The CD2-dependent association of p62(dok) to Crk-L was independent of expression of the ZAP70/Syk family of kinases. Of note, while T cell receptor-CD3 engagement did not induce either p62(dok) phosphorylation or Crk-L association in Jurkat T cells, it did inhibit CD2-dependent p62(dok)-Crk-L complexes; this TcR-CD3-mediated regulation was dependent upon ZAP70 kinase activity. Our data suggest that phosphorylation of p62(dok) and its interaction with other signaling proteins may depend upon integrated signals emanating from the CD2 receptor, utilizing a ZAP70/LAT-independent pathway, and the TcR-CD3 receptor, which is ZAP70/Syk-dependent.  相似文献   

7.
Thrombospondin-1 inhibits TCR-mediated T lymphocyte early activation   总被引:9,自引:0,他引:9  
Biological activities of the matrix glycoprotein thrombospondin-1 (TSP1) are cell type specific and depend on the relative expression or activation of several TSP1 receptors. Although engaging individual TSP1 receptors in T lymphocytes can elicit costimulating signals, in this study we show that intact TSP1 inhibits TCR-mediated T cell activation, assessed globally using cDNA microarrays. TSP1 signaling suppressed expression of several genes induced in Jurkat T cells, including the T cell activation markers CD69, early growth response gene-1 (Egr-1), and phosphatase of activated cells (PAC-1). TCR-stimulated and CD47-costimulated IL-2 secretion and cell surface CD69 expression were also inhibited by TSP1. The specific inhibitory effect of TSP1 was verified in freshly isolated human PBMCs. TSP1 inhibited TCR-mediated but not protein kinase C-mediated T cell activation. Using CD69 expression as a marker, we demonstrated that the inhibitory activity of TSP1 depended on two TSP1 receptors, CD47 and integrin-associated protein heparan sulfate proteoglycans. Signals from these receptors inhibited TCR signaling downstream of ZAP70, but upstream of NF-AT. Therefore, the expression of TSP1 induced during wound repair and in tumor stroma may limit T cell activation at these sites.  相似文献   

8.
9.
10.
This study addresses the interactions between the adaptor protein Shb and components involved in T cell signalling, including SLP-76, Gads, Vav and ZAP70. We show that both SLP-76 and ZAP70 co-immunoprecipitate with Shb in Jurkat T cells and that Shb and Vav co-immunoprecipitate when cotransfected in COS cells. We also demonstrate, utilizing fusion protein constructs, that SLP-76, Gads and Vav associate independently of each other to different domains or regions, of Shb. Overexpression of an SH2 domain-defective Shb causes diminished phosphorylation of SLP-76 and Vav and consequently decreased activation of c-Jun kinase upon T cell receptor (TCR) stimulation. Shb was also found to localize to glycolipid-enriched membrane microdomains (GEMs), also called lipid rafts, after TCR stimulation. Our results indicate that upon TCR stimulation, Shb is targeted to these lipid rafts where Shb aids in recruiting the SLP-76-Gads-Vav complex to the T cell receptor zeta-chain and ZAP70.  相似文献   

11.
12.
Adult and neonatal immunocompetent cells exhibit important functional distinctions, including differences in cytokine production and susceptibility to tolerance induction. We have investigated the molecular features that characterize the immune response of cord blood-derived T lymphocytes compared with that of adult T lymphocytes. Our findings demonstrate that phospholipase C (PLC) isozymes, which play a pivotal role in the control of protein kinase C activation and Ca2+ mobilization, are differently expressed in cord and adult T lymphocytes. PLCbeta1 and delta1 are expressed at higher levels in cord T cells, while PLCbeta2 and gamma1 expression is higher in adult T lymphocytes. PLCdelta2 and gamma2 appear to be equally expressed in both cell types. In addition, a functional defect in PLC activation via CD3 ligation or pervanadate treatment, stimuli that activate tyrosine kinases, was observed in cord blood T cells, whereas treatment with aluminum tetrafluoride (AlF4-), a G protein activator, demonstrated a similar degree of PLC activation in cord and adult T cells. The impaired PLC activation of cord blood-derived T cells was associated with a a very low expression of the Src kinase, Lck, along with a reduced level of ZAP70. No mitogenic response to CD3 ligation was observed in cord T cells. However, no signaling defect was apparent downstream of PLC activation, as demonstrated by the mitogenic response of cord T cells to the pharmacologic activation of protein kinase C and Ca2+ by treatment with PMA and ionomycin. Thus, neonatal cord blood-derived T cells show a signaling immaturity associated with inadequate PLCgamma activation and decreased Lck expression.  相似文献   

13.
Spleen tyrosine kinase (Syk), a nonreceptor protein kinase initially found to be expressed only in hemopoietic cells, has now been shown to be expressed in nonhemopoietic cells and to mediate signaling of various cytokines. Whether Syk plays any role in TNF signaling was investigated. Treatment of Jurkat T cells with TNF activated Syk kinase but not ZAP70, another member of Syk kinase family, and the optimum activation occurred at 10 s and with 1 nM TNF. TNF also activated Syk in myeloid and epithelial cells. TNF-induced Syk activation was abolished by piceatannol (Syk-selective inhibitor), which led to the suppression of TNF-induced activation of c- JNK, p38 MAPK, and p44/p42 MAPK. Jurkat cells that did not express Syk (JCaM1, JCaM1/lck) showed lack of TNF-induced Syk, JNK, p38 MAPK, and p44/p42 MAPK activation, as well as TNF-induced IkappaBalpha phosphorylation, IkappaBalpha degradation, and NF-kappaB activation. TNF-induced NF-kappaB activation was enhanced by overexpression of Syk by Syk-cDNA and suppressed when Syk expression was down-regulated by expression of Syk-small interfering RNA (siRNA-Syk). The apoptotic effects of TNF were reduced by up-regulation of NF-kappaB by Syk-cDNA, and enhanced by down-regulation of NF-kappaB by siRNA-Syk. Immunoprecipitation of cells with Syk Abs showed TNF-dependent association of Syk with both TNFR1 and TNFR2; this association was enhanced by up-regulation of Syk expression with Syk-cDNA and suppressed by down-regulation of Syk using siRNA-Syk. Overall, our results demonstrate that Syk activation plays an essential role in TNF-induced activation of JNK, p38 MAPK, p44/p42 MAPK, NF-kappaB, and apoptosis.  相似文献   

14.
15.
Signaling by the antigen receptor of T lymphocytes initiates different developmental transitions, each of which require the tyrosine kinase ZAP70. Previous studies with agonist and antagonist peptides have indicated that ZAP70 might respond differently to different structures of the TCR-CD3 complex induced by bound peptides. The roles of membrane proximity and orientation in activation of ZAP70 signaling were explored using synthetic ligands and their binding proteins designed to produce different architectures of membrane-bound complexes composed of ZAP70 fusion proteins. Transient membrane recruitment of physiological levels of ZAP70 with the membrane-permeable synthetic ligand FK1012A leads to rapid phosphorylation of ZAP70 and activation of the ras/MAPK and Ca2+/calcineurin signaling pathways. ZAP70 SH2 domains are not required for signaling when the kinase is artifically recruited to the membrane, indicating that the SH2 domains function solely in recruitment and not in kinase activation. Using additional synthetic ligands and their binding proteins that recruit ZAP70 equally well but orient it at the cell membrane in different ways, we define a requirement for a specific presentation of ZAP70 to its downstream targets. These results provide a mechanism by which ZAP70, bound to the phosphorylated receptor, could discriminate between conformational changes induced by the binding of different MHC-peptide complexes to the antigen receptor and introduce an approach to exploring the role of spatial orientation of signaling complexes in living cells.  相似文献   

16.
The tyrosine kinase ZAP-70 has been implicated as a critical intermediary between T-cell antigen receptor (TCR) stimulation and Erk activation on the basis of the ability of dominant negative ZAP-70 to inhibit TCR-stimulated Erk activation, and the reported inability of anti-CD3 antibodies to activate Erk in ZAP-70-negative Jurkat cells. However, Erk is activated in T cells receiving a partial agonist signal, despite failing to activate ZAP-70. This discrepancy led us to reanalyze the ZAP-70-negative Jurkat T-cell line P116 for its ability to support Erk activation in response to TCR/CD3 stimulation. Erk was activated by CD3 cross-linking in P116 cells. However, this response required a higher concentration of anti-CD3 antibody and was delayed and transient compared to that in Jurkat T cells. Activation of Raf-1 and MEK-1 was coincident with Erk activation. Remarkably, the time course of Ras activation was comparable in the two cell lines, despite proceeding in the absence of LAT tyrosine phosphorylation in the P116 cells. CD3 stimulation of P116 cells also induced tyrosine phosphorylation of phospholipase C-gamma1 (PLCgamma1) and increased the intracellular Ca(2+) concentration. Protein kinase C (PKC) inhibitors blocked CD3-stimulated Erk activation in P116 cells, while parental Jurkat cells were refractory to PKC inhibition. The physiologic relevance of these signaling events is further supported by the finding of PLCgamma1 tyrosine phosphorylation, Erk activation, and CD69 upregulation in P116 cells on stimulation with superantigen and antigen-presenting cells. These results demonstrate the existence of two pathways leading to TCR-stimulated Erk activation in Jurkat T cells: a ZAP-70-independent pathway requiring PKC and a ZAP-70-dependent pathway that is PKC independent.  相似文献   

17.
18.
19.
Chemokines regulate the homeostatic trafficking of lymphocytes and lymphocyte influx into sites of injury and inflammation. The signaling pathways by which chemokine receptors regulate lymphocyte migration remain incompletely characterized. We demonstrate that Jurkat T cells lacking the ZAP-70 tyrosine kinase exhibit reduced migration in response to the CXCR4 ligand CXCL12 when compared with wild-type Jurkat T cells. Expression of wild-type, but not kinase-inactive, ZAP-70 resulted in enhanced migration of ZAP-70-deficient Jurkat T cells. The tyrosine residue at position 292 in the interdomain B region of ZAP-70 exerts a negative regulatory effect on ZAP-70-dependent migration. Stimulation of Jurkat T cells with CXCL12 also resulted in ZAP-70-dependent tyrosine phosphorylation of the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) adapter protein. Although CXCL12-dependent migration of SLP-76-deficient Jurkat T cells was impaired, re-expression of SLP-76 did not enhance migration. These results suggest a novel function for ZAP-70, but not SLP-76, in CXCR4 chemokine receptor signaling in human T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号