首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
AIMS: Current measures for controlling the public health risks associated with bivalve molluscan shellfish consumption rely on the use of Escherichia coli to indicate the sanitary quality of shellfish harvesting areas. However, it has been demonstrated that E. coli is an inadequate indicator of the viral risk associated with shellfish. An alternative indicator organism, male-specific RNA (FRNA) bacteriophage has been proposed for this role. This study compared the distribution of E. coli and FRNA bacteriophage in shellfish harvesting areas. METHODS AND RESULTS: A total of 608 shellfish samples from 49 shellfish harvesting areas were analysed for E. coli and FRNA bacteriophage using standard published methods. The geometric mean concentration of FRNA bacteriophage in all samples was over three times greater than that of E. coli (1800 and 538 counts/100 g for FRNA bacteriophage and E. coli, respectively). In contrast to E. coli, FRNA bacteriophage concentrations were strongly influenced by season with a geometric mean count of 4503 PFU/100 g in the winter (October-March) compared with 910 PFU/100 g in the summer (April-September). CONCLUSIONS: FRNA bacteriophage were present in shellfish at higher concentrations than E. coli. Elevated levels of FRNA bacteriophage observed in the winter concur with the known increased viral risk associated with shellfish harvested at that time of year in the UK. Levels of FRNA bacteriophage found in many shellfish from category B harvesting areas would not be eliminated by conventional treatment processes. SIGNIFICANCE AND IMPACT OF THE STUDY: Data from this study will inform future proposals to introduce FRNA bacteriophage as an indicator of the viral risk associated with shellfish.  相似文献   

3.
A modified polyethylene glycol precipitation method for concentration of virus followed by a new method to recover nucleic acid was used to detect hepatitis A virus (HAV) and rotavirus (SA11) in shellfish (oysters and hard-shell clams) by hybridization tests. Infectious virus, seeded into relatively large quantities of shellfish, was recovered consistently, with greater than 90% efficiency as measured by either in situ hybridization (HAV) or plaque assay (rotavirus SA11). Viral nucleic acid for dot blot hybridization assays was extracted and purified from virus-containing polyethylene glycol concentrates. Separation of shellfish polysaccharides from nucleic acid was necessary before viral RNA could be detected by dot blot hybridization. Removal of shellfish polysaccharides was accomplished by using the cationic detergent cetyltrimethylammonium bromide (CTAB). Use of CTAB reduced background interference with hybridization signals, which resulted in increased hybridization test sensitivity. After polysaccharide removal, dot blot hybridization assays could detect approximately 10(6) physical particles (corresponding to approximately 10(3) infectious particles) of HAV and 10(4) PFU of SA11 rotavirus present in 20-g samples of oyster and clam meats. These studies show continuing promise for the development of uniform methods to directly detect human viral pathogens in different types of shellfish. However, practical applications of such methods to detect noncultivatable human viral pathogens of public health interest will require additional improvements in test sensitivity.  相似文献   

4.
A modified polyethylene glycol precipitation method for concentration of virus followed by a new method to recover nucleic acid was used to detect hepatitis A virus (HAV) and rotavirus (SA11) in shellfish (oysters and hard-shell clams) by hybridization tests. Infectious virus, seeded into relatively large quantities of shellfish, was recovered consistently, with greater than 90% efficiency as measured by either in situ hybridization (HAV) or plaque assay (rotavirus SA11). Viral nucleic acid for dot blot hybridization assays was extracted and purified from virus-containing polyethylene glycol concentrates. Separation of shellfish polysaccharides from nucleic acid was necessary before viral RNA could be detected by dot blot hybridization. Removal of shellfish polysaccharides was accomplished by using the cationic detergent cetyltrimethylammonium bromide (CTAB). Use of CTAB reduced background interference with hybridization signals, which resulted in increased hybridization test sensitivity. After polysaccharide removal, dot blot hybridization assays could detect approximately 10(6) physical particles (corresponding to approximately 10(3) infectious particles) of HAV and 10(4) PFU of SA11 rotavirus present in 20-g samples of oyster and clam meats. These studies show continuing promise for the development of uniform methods to directly detect human viral pathogens in different types of shellfish. However, practical applications of such methods to detect noncultivatable human viral pathogens of public health interest will require additional improvements in test sensitivity.  相似文献   

5.
The distribution of the concentration of potential indicators of fecal viral pollution in shellfish was analyzed under diverse conditions over 18 months in diverse geographical areas. These microorganisms have been evaluated in relation to contamination by human viral pathogens detected in parallel in the analyzed shellfish samples. Thus, significant shellfish-growing areas from diverse countries in the north and south of Europe (Greece, Spain, Sweden, and the United Kingdom) were defined and studied by analyzing different physicochemical parameters in the water and the levels of Escherichia coli, F-specific RNA bacteriophages, and phages infecting Bacteroides fragilis strain RYC2056 in the shellfish produced, before and after depuration treatments. A total of 475 shellfish samples were studied, and the results were statistically analyzed. According to statistical analysis, the presence of human viruses seems to be related to the presence of all potential indicators in the heavily contaminated areas, where E. coli would probably be suitable as a fecal indicator. The F-RNA phages, which are present in higher numbers in Northern Europe, seem to be significantly related to the presence of viral contamination in shellfish, with a very weak predictive value for hepatitis A virus, human adenovirus, and enterovirus and a stronger one for Norwalk-like virus. However, it is important to note that shellfish produced in A or clean B areas can sporadically contain human viruses even in the absence of E. coli or F-RNA phages. The data presented here will be useful in defining microbiological parameters for improving the sanitary control of shellfish consumed raw or barely cooked.  相似文献   

6.
7.
The hepatitis A virus (HAV) is the most common cause of viral infection linked to shellfish consumption. The lack of correlation between the fecal coliform indicators and the presence of enteric viruses in shellfish and their harvesting waters points to the need for molecular methods to detect viruses. We compared two RT-PCR based techniques currently available for the detection of the hepatitis A virus (HAV) in shellfish. Both approaches involve extraction of viral particles by glycine buffer and concentration of virus particles by one or two PEG precipitation steps. One procedure involves as RNA extraction method the use of oligo (dT) cellulose to select poly (A) RNA, and the other uses a system in which total RNA is bound on silica membrane. Comparison of the two RT-PCR based methods highlighted the efficiency of the first approach which is less time-consuming and technically demanding than the second.  相似文献   

8.
The distribution of the concentration of potential indicators of fecal viral pollution in shellfish was analyzed under diverse conditions over 18 months in diverse geographical areas. These microorganisms have been evaluated in relation to contamination by human viral pathogens detected in parallel in the analyzed shellfish samples. Thus, significant shellfish-growing areas from diverse countries in the north and south of Europe (Greece, Spain, Sweden, and the United Kingdom) were defined and studied by analyzing different physicochemical parameters in the water and the levels of Escherichia coli, F-specific RNA bacteriophages, and phages infecting Bacteroides fragilis strain RYC2056 in the shellfish produced, before and after depuration treatments. A total of 475 shellfish samples were studied, and the results were statistically analyzed. According to statistical analysis, the presence of human viruses seems to be related to the presence of all potential indicators in the heavily contaminated areas, where E. coli would probably be suitable as a fecal indicator. The F-RNA phages, which are present in higher numbers in Northern Europe, seem to be significantly related to the presence of viral contamination in shellfish, with a very weak predictive value for hepatitis A virus, human adenovirus, and enterovirus and a stronger one for Norwalk-like virus. However, it is important to note that shellfish produced in A or clean B areas can sporadically contain human viruses even in the absence of E. coli or F-RNA phages. The data presented here will be useful in defining microbiological parameters for improving the sanitary control of shellfish consumed raw or barely cooked.  相似文献   

9.
10.
11.
12.
In order to detect the low numbers of hepatitis A viral (HAV) particles which may potentially be present in food and cause a serious illness, an original procedure which combines immunomagnetic separation and PCR is described. The use of streptavidin magnetic beads coated with biotinylated human anti-HAV IgG allows virus capture and the removal of the RT-PCR inhibitory compounds which usually are present in shellfish extracts. Following immunomagnetic capture, the separated HAV were lysed, the beads discarded, and the supernatant containing the viral RNA subjected to the RT-PCR protocol. Levels of HAV ranging from 10 to 105 pfu were successfully detected in artificially contaminated samples of shucked American oyster ( Crassostrea virginica ).  相似文献   

13.
The great majority of plant viruses encapsidate messenger-sense ssRNA and have no natural DNA phase in their life cycle. Despite their RNA nature, essentially any desired change can be introduced into such genomes by using recombinant DNA techniques with suitably constructed, expressible viral cDNA clones. For some viruses such as brome mosaic virus, these methods have been used to define the sequences controlling RNA-directed genomic RNA replication and the expression of internal genes via subgenomic mRNAs. The results suggest a surprising degree of genetic flexibility, which appears to be reflected in the varied gene complements and genetic organizations of presumably related plant and animal RNA viruses sharing conserved replication genes. Foreign genes inserted in such RNA virus genomes can be amplified and expressed to a high level in transfected plant cells. In addition to the potential use of such viruses as episomal expression vectors, it should be possible to couple the viral pathways of RNA-dependent RNA synthesis to amplify and to further regulate the expression of genes transformed into plant chromosomes.  相似文献   

14.
The purpose of this study was to determine the efficacy of a nucleic acid sequence-based amplification (NASBA) method of detecting noroviruses in artificially and naturally contaminated shellfish. We used 58 fecal samples that tested positive for noroviruses with electron microscopy (EM) to develop an NASBA assay for these viruses. Oligonucleotide primers targeting the polymerase coding region were used to amplify the viral RNA in an isothermal process that resulted in the accumulation of RNA amplicons. These amplicons were detected by hybridization with digoxigenin-labeled oligonucleotide probes that were highly specific for genogroup I (GI) and genogroup II (GII) of noroviruses. The expected band of 327 bp appeared in denaturing agarose gel without any nonspecific band. The specific signal for each amplicon was obtained through Northern blotting in many repeats. All fecal samples of which 46 (79.3%) belonged to GII and 12 (20.6%) belonged to GI were positive for noroviruses by EM and by NASBA. Target RNA concentrations as low as 5 pg/ml were detected in fecal specimens using NASBA. When the assay was applied to artificially contaminated shellfish, the sensitivity to nucleic acid was 100 pg/1.5 g shellfish tissue. The potential use of this assay was also confirmed in naturally contaminated shellfish collected from different ponds in Guangzhou city of China, of which 24 (18.76%) out of 128 samples were positive for noroviruses; of these, 19 (79.6%) belonged to GII and 5 (20.4%) belonged to GI. The NASBA assay provided a more rapid and efficient way of detecting noroviruses in fecal samples and demonstrated its potential for detecting noroviruses in food and environmental samples with high specificity and sensitivity.  相似文献   

15.
16.
Norovirus detection in shellfish using two Real-Time RT-PCR methods   总被引:1,自引:0,他引:1  
Shellfish are recognized as a potential vehicle of viral diseases. The aim of the present study was to determine the ability of two real-time RT-PCR methods (an in-house method and a commercial kit) for detecting Norovirus (NoV) belonging to genogroups GI and GII in shellfish. The analyses were performed both on a Norovirus Reference Panel (NRP), consisting of synthetic RNA, and on naturally contaminated mussels. For the experiments carried out on the NRP a statistically significant difference (?2=8.03) was shown between the results obtained by the two methods. The in-house real-time RT-PCR allowed the detection of all genotypes belonging to GI and GII, while the commercial kit was not suitable for the detection of the majority of the GI sequences constituting the panel. No significant difference was instead detected in the experiments carried out on shellfish, where the presence of GI was always concomitant with GII. Both methods were suitable for detection of NoV in shellfish, however the in-house real-time RT-PCR method had the advantage of differentiating GI and GII contamination. As regards the shellfish analysed, a considerable frequency of NoV contamination (34.4% of the samples) was detected, with a predominance of NoV GII.  相似文献   

17.
Viral Depuration by Assaying Individual Shellfish   总被引:3,自引:3,他引:0       下载免费PDF全文
A study was carried out to further evaluate the practicability of viral depuration by assaying individual shellfish. The Northern quahaug and a strain of the type 1 attenuated poliovirus were used as the working model. Two types of depuration systems were employed: the small experimental tanks and a pilot-size tank with a capacity of approximately 24 bushels (836 liters) of shellfish. Volumes of the individual shellfish samples were found uniform throughout the experiments when a prior selection for the weight of the shellfish was made. There was also no significant difference in volumes of the individual samples during the course of depuration (24 to 96 hr). Under controlled hydrographic conditions, however, the uptake of virus in individual shellfish varied considerably. In general, the individual variability reached 10- to 100-fold. This wide variation would explain the variability of viral contents obtained in pooled samples during depuration as reported previously. During a later phase of depuration, although a great majority of shellfish were free of the virus, a few still harbored minimal amounts of contaminants. The presence of virus in some of the shellfish after various periods of depuration would, theoretically, be obscured by the pooling of the sampled shellfish. Further examination of the negative samples by assaying larger quantities than those routinely used revealed that a few still contained virus. To simulate naturally polluted shellfish as closely as technically possible, shellfish were polluted with minimal amounts of virus. The shellfish were cleansed more rapidly by the depuration process than were those polluted with more virus. Since the naturally polluted shellfish were shown to contain less virus than those studied in the laboratory, it is anticipated that the former type of shellfish may be cleansed more readily by this process within a reasonable period of time. Justification for a field trial of depuration in this country is presented.  相似文献   

18.
Genomic probes were used to investigate hepatitis A virus (HAV) and enterovirus RNAs in two types of shellfish from natural beds (Atlantic coast, France). After elution concentration, nucleic acid extracted by proteinase K and purified by phenol-chloroform and ethanol precipitation was assayed by dot blot hybridization. The probes used were a specific HAV probe corresponding to the 3' end (3D polymerase coding region) and an enterovirus probe corresponding to the 5' noncoding region. The method was first tested under experimental conditions by using virus-spiked shellfish before being applied under field conditions. Our results show that shellfish were highly contaminated: enterovirus and HAV RNAs were found in 63 and 67%, respectively, of samples examined with the riboprobes. On the same site, viral (HAV and enterovirus) RNAs were found in a larger fraction of cockles than mussels. Statistical tests of dependence showed no relationship between viral contamination and bacterial contamination (evaluated by fecal coliform counts).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号