首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small peptides derived from the CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) gene family play a key role in various cell-cell communications in land plants. Among them, tracheary element differentiation inhibition factor (TDIF; CLE41/CLE44 peptide) and CLE42 peptide of Arabidopsis have almost identical amino acid sequences and act as inhibitors of tracheary element differentiation. In this study, we report a novel function of TDIF and CLE42. We found by the GUS (β-glucuronidase) reporter gene assay that while CLE41 and CLE44 are expressed preferentially in vascular bundles, CLE42 is expressed strongly in the shoot apical meristem (SAM) and axillary meristems. Overexpression of CLE42 and CLE41 enhanced axillary bud formation in the leaf and cotyledon axils. Before floral transition, the emergence of axillary buds in these plants occurred in an acropetal order. Exogenous supply of either TDIF or CLE42 peptide to the wild type induced similar excess bud emergence. In vascular bundles, the TDIF RECEPTOR (TDR) acts as the main receptor for TDIF. The axillary bud emergence of tdr mutants was little affected by either of the peptides. It was confirmed by scanning electron microscopy that peptide-treated wild-type plants form an axillary meristem-like structure earlier than non-treated plants. SHOOT MERISTEMLESS (STM), a marker gene for meristems, was up-regulated in peptide-treated plants before the axillary meristem becomes morphologically distinguishable. These results indicate that CLE42 peptide and TDIF have an activity to enhance axillary bud formation via the TDR. Judging from its expression pattern, CLE42 may play an important role in the regulation of secondary shoot development.  相似文献   

2.
[ Guodong Wang (Corresponding author)] The plant vascular system consists of two conductive tissues, phloem and xylem. The vascular meristem, namely the (pro‐)cambium, is a stem‐cell tissue that gives rise to both xylem and phloem. Recent studies have revealed that CLAVATA3/Embryo Surrounding Region‐related (CLE) peptides function in establishing the vascular system through interaction with phytohormones. In particular, TDIF/CLE41/CLE44, phloem‐derived CLE peptides, promote the proliferation of vascular cambium cells and prevent them from differentiating into xylem by regulating WOX4 expression through the TDR/PXY receptor. In this review article, we outline recent advances on how CLE peptides function in vascular development in concert with phytohormones through mediating cell‐cell communication. The perspective of CLE peptide signaling in vascular development is also discussed.  相似文献   

3.
Research in the past decade revealed that peptide ligands, also called peptide hormones, play a crucial role in intercellular communication and defense response in plants. Recent studies demonstrated that a family of plant-specific genes, CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE), which has at least 31 members in Arabidopsis genome, are able to generate extracellular peptides to regulate cell division and differentiation. A hydroxyl 12-amino acid peptide derived from the conserved CLE motif of CLV3 promotes cell differentiation, whereas another CLE-derived peptide suppresses the differentiation. These peptides probably interact with membrane-bound, leucine-rich repeat receptor-like kinases (LRR-RLKs) to execute the decision between cell proliferation and differentiation.  相似文献   

4.
Arabidopsis root development is orchestrated by signaling pathways that consist of different CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands and their cognate CLAVATA (CLV) and BARELY ANY MERISTEM (BAM) receptors. How and where different CLE peptides trigger specific morphological or physiological changes in the root is poorly understood. Here, we report that the receptor‐like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) are necessary to fully sense root‐active CLE peptides. We uncover BAM3 as the CLE45 receptor in the root and biochemically map its peptide binding surface. In contrast to other plant peptide receptors, we found no evidence that SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) proteins act as co‐receptor kinases in CLE45 perception. CRN stabilizes BAM3 expression and thus is required for BAM3‐mediated CLE45 signaling. Moreover, protophloem‐specific CRN expression complements resistance of the crn mutant to root‐active CLE peptides, suggesting that protophloem is their principal site of action. Our work defines a genetic framework for dissecting CLE peptide signaling and CLV/BAM receptor activation in the root.  相似文献   

5.
Peptide signaling in plant development   总被引:2,自引:0,他引:2  
Cell-to-cell communication is integral to the evolution of multicellularity. In plant development, peptide signals relay information coordinating cell proliferation and differentiation. These peptides are often encoded by gene families and bind to corresponding families of receptors. The precise spatiotemporal expression of signals and their cognate receptors underlies developmental patterning, and expressional and biochemical changes over evolutionary time have likely contributed to the refinement and complexity of developmental programs. Here, we discuss two major plant peptide families which have central roles in plant development: the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) peptide family and the EPIDERMAL PATTERNING FACTOR (EPF) family. We discuss how specialization has enabled the CLE peptides to modulate stem cell differentiation in various tissue types, and how differing activities of EPF peptides precisely regulate the stomatal developmental program, and we examine the contributions of these peptide families to plant development from an evolutionary perspective.  相似文献   

6.
Regulation of Vascular Development by CLE Peptide-receptor Systems   总被引:1,自引:0,他引:1  
Cell division and differentiation of stem cells are controlled by non-cell-autonomous signals in higher organisms. The plant vascular meristem is a stem-cell tissue comprising procambial cells that produce xylem cells on one side and phloem cells on the other side. Recent studies have revealed that TDIF (tracheary element differentiation inhibitory factor)/CLE41/CLE44 peptide signal controls the procambial cell fate in a non-cell-autonomous manner. TDIF produced in and secreted from phloem cells is perceived by TDR/PXY, a leucine-rich repeat receptor kinase located in the plasma membrane of procambial cells. This signal suppresses xylem cell differentiation of procambial cells and promotes their proliferation. In addition to TDIF, some other CLE peptides play roles in vascular development. Here, we summarize recent advances in CLE signaling governing vascular development.  相似文献   

7.
CLAVATA3 (CLV3), CLV3/ESR19 (CLE19), and CLE40 belong to a family of 26 genes in Arabidopsis thaliana that encode putative peptide ligands with unknown identity. It has been shown previously that ectopic expression of any of these three genes leads to a consumption of the root meristem. Here, we show that in vitro application of synthetic 14-amino acid peptides, CLV3p, CLE19p, and CLE40p, corresponding to the conserved CLE motif, mimics the overexpression phenotype. The same result was observed when CLE19 protein was applied externally. Interestingly, clv2 failed to respond to the peptide treatment, suggesting that CLV2 is involved in the CLE peptide signaling. Crossing of the CLE19 overexpression line with clv mutants confirms the involvement of CLV2. Analyses using tissue-specific marker lines revealed that the peptide treatments led to a premature differentiation of the ground tissue daughter cells and misspecification of cell identity in the pericycle and endodermis layers. We propose that these 14-amino acid peptides represent the major active domain of the corresponding CLE proteins, which interact with or saturate an unknown cell identity-maintaining CLV2 receptor complex in roots, leading to consumption of the root meristem.  相似文献   

8.
CLE peptide signaling during plant development   总被引:1,自引:0,他引:1  
  相似文献   

9.
Diverse and conserved roles of CLE peptides   总被引:1,自引:0,他引:1  
The function of plant CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE) peptides in shoot meristem differentiation has been expanded in recent years to implicate roles in root growth and vascular development among different CLE family members. Recent evidence suggests that nematode pathogens within plant roots secrete ligand mimics of plant CLE peptides to modify selected host cells into multinucleate feeding sites. This discovery demonstrated an unprecedented adaptation of an animal gene product to functionally mimic a plant peptide involved in cellular signaling for parasitic benefit. This review highlights the diverse and conserved role of CLE peptides in these different contexts.  相似文献   

10.
In this article, we present the cloning of two CLAVATA3/ESR (CLE)-like genes, HsCLE1 and HsCLE2, from the beet cyst nematode Heterodera schachtii, a plant-parasitic cyst nematode with a relatively broad host range that includes the model plant Arabidopsis. CLEs are small secreted peptide ligands that play important roles in plant growth and development. By secreting peptide mimics of plant CLEs, the nematode can developmentally reprogramme root cells for the formation of unique feeding sites within host roots for its own benefit. Both HsCLE1 and HsCLE2 encode small secreted polypeptides with a conserved C-terminal CLE domain sharing highest similarity to Arabidopsis CLEs 1-7. Moreover, HsCLE2 contains a 12-amino-acid CLE motif that is identical to AtCLE5 and AtCLE6. Like all other plant and nematode CLEs identified to date, HsCLEs caused wuschel-like phenotypes when overexpressed in Arabidopsis, and this activity was abolished when the proteins were expressed without the CLE motif. HsCLEs could also function in planta without a signal peptide, highlighting the unique, yet conserved function of nematode CLE variable domains in trafficking CLE peptides for secretion. In a direct comparison of HsCLE2 overexpression phenotypes with those of AtCLE5 and AtCLE6, similar shoot and root phenotypes were observed. Exogenous application of 12-amino-acid synthetic peptides corresponding to the CLE motifs of HsCLEs and AtCLE5/6 suggests that the function of this class of CLEs may be subject to complex endogenous regulation. When seedlings were grown on high concentrations of peptide (10 μm), root growth was suppressed; however, when seedlings were grown on low concentrations of peptide (0.1 μm), root growth was stimulated. Together, these findings indicate that AtCLEs1-7 may be the target peptides mimicked by HsCLEs to promote parasitism.  相似文献   

11.
Ligand-receptor signaling initiated by the CLAVATA3/ ENDOSPERM SURROUNDING REGION (CLE) family peptides is critical in regulating cell division and differentiation in meristematic tissues in plants. Biologically active CLE peptides are released from precursor proteins via proteolytic processing. The mature form of CLE ligands consists of 12–13 amino acids with several post-translational modifications. This review summarizes recent progress toward understanding the proteolytic activities that cleave precursor proteins to release CLE peptides, the molecular structure and function of mature CLE ligands, and interactions between CLE ligands and corresponding leucine-rich repeat (LRR) receptor-like kinases (RLKs).  相似文献   

12.
植物信号肽的研究主要集中在小分子肽.小分子肽作为胞间通讯的关键成分,主要参与信号干扰、反应途径、显示抗菌活性,并以配体的形式与细胞膜表面的受体激酶相互作用,从而实现细胞之间的信号交流.小分子肽是重要的胞间信号感应分子,在植物的不同器官组织、发育阶段主要参与调节植物的生长发育过程和应答生物和非生物胁迫的应激反应,以协调和...  相似文献   

13.

Background

Plants encode a large number of leucine-rich repeat receptor-like kinases. Legumes encode several LRR-RLK linked to the process of root nodule formation, the ligands of which are unknown. To identify ligands for these receptors, we used a combination of profile hidden Markov models and position-specific iterative BLAST, allowing us to detect new members of the CLV3/ESR (CLE) protein family from publicly available sequence databases.

Results

We identified 114 new members of the CLE protein family from various plant species, as well as five protein sequences containing multiple CLE domains. We were able to cluster the CLE domain proteins into 13 distinct groups based on their pairwise similarities in the primary CLE motif. In addition, we identified secondary motifs that coincide with our sequence clusters. The groupings based on the CLE motifs correlate with known biological functions of CLE signaling peptides and are analogous to groupings based on phylogenetic analysis and ectopic overexpression studies. We tested the biological function of two of the predicted CLE signaling peptides in the legume Medicago truncatula. These peptides inhibit the activity of the root apical and lateral root meristems in a manner consistent with our functional predictions based on other CLE signaling peptides clustering in the same groups.

Conclusion

Our analysis provides an identification and classification of a large number of novel potential CLE signaling peptides. The additional motifs we found could lead to future discovery of recognition sites for processing peptidases as well as predictions for receptor binding specificity.  相似文献   

14.
Using 26 chemically synthetic CLAVATA3/ESR (CLE) peptides, which correspond to the predicted products of the 31 Arabidopsis CLE genes, we investigated the CLE peptide function in Arabidopsis and rice. Treatment with some CLE peptides inhibited root elongation in rice as well as in Arabidopsis. It also reduced the size of the shoot apical meristem in Arabidopsis but not in rice. Database searches revealed 47 putative CLE genes in the rice genome and multiple CLE domains in some CLE genes, indicating diverse CLE function in these plants.  相似文献   

15.
16.
17.
The vascular endothelium expresses differential receptors depending on the functional state and tissue localization of its cells. A method to characterize this receptor heterogeneity with phage display random peptide libraries has been developed. Using this technology, several peptide ligands have been isolated that home to tissue-specific endothelial cell receptors following intravenous administration. Such peptide ligands, or antibodies directed against specific vascular receptors, can be used to target therapeutic compounds or imaging agents to endothelial cells in vitro and in vivo. Recent advances in the field include identification of novel endothelial receptors expressed differentially in normal and pathological conditions and the isolation of peptides or antibody ligands to such receptors in in vitro assays, in animal models and in a human patient. These milestones, which extend the 'functional map' of the vasculature, should lead to clinical applications in diseases such as cancer and other conditions that exhibit distinct vascular characteristics.  相似文献   

18.
CLE (CLAVATA3/ESR-related) peptides are developmental regulators that are secreted into the apoplast. Little is known about the role of the sequences that flank CLE peptides in terms of their biological activity or how they are targeted by proteases that are known to liberate the final active CLE peptides from their precursor sequences. The biological activity of Medicago truncatula CLE36, which possesses broadly conserved border sequences flanking the putative final active CLE36 peptide product, was assessed. Using in vitro root growth assays and an in vitro root and callus formation assay it is shown that CLE36 peptides of different lengths possess differential biological activities. Using mass spectrometry, Glycine max and Medicago extracellular fluids were each shown to possess an endoproteolytic activity that recognizes and cleaves at border sequences in a synthetic 31 amino acid CLE36 'propeptide bait' to liberate biologically active peptide products. Inhibitor studies suggest that a subtilisin, in combination with a carboxypeptidase, liberated and trimmed CLE36, respectively, to form biologically relevant 11-15 amino acid cleavage products. The 15 amino acid cleavage product is more biologically potent on Arabidopsis than shorter or longer CLE peptides. In situ hybridization shows that the soybean orthologue of CLE36 (GmCLE34) is expressed in the provascular tissue. The results suggest that secreted subtilisins can specifically recognize the border sequences of CLE36 propeptides and liberate biologically active cleavage products. These secreted proteases may affect the stability and biological activity of CLE peptides in the apoplast or be involved in CLE36 processing.  相似文献   

19.
Both receptor tyrosine kinases epidermal growth factor receptors (EGFRs) and their ligands are transmembrane proteins. It has been known that ligand binding activates cytoplasmic tyrosine kinase domains of EGFRs, resulting in the transduction of signals for cell proliferation, migration, differentiation or survival. In an EGFRs-ligands system, however, signal transduction occurs not only unidirectionally but also bidirectionally, which is regulated by cell-cell contact and proteolytic cleavage. Recent studies of proteolytic cleavage 'ectodomain shedding' of EGFRs and their ligands mediated by membrane-type metalloproteinases, a disintegrin and metalloproteinases have been unveiling novel functions and molecular mechanism of their remnant peptides. In addition, the study of the remnant peptide signalling would be essential for understanding the physiological and pathological relevance of anti-shedding therapeutic strategies for diseases such as cancer.  相似文献   

20.
Proteins destined for secretion or membrane compartments possess signal peptides for insertion into the membrane. The signal peptide is therefore critical for localization and function of cell surface receptors and ligands that mediate cell-cell communication. About 4% of all human proteins listed in UniProt database have signal peptide domains in their N terminals. A comprehensive literature survey was performed to retrieve functional and disease associated genetic variants in the signal peptide domains of human proteins. In 21 human proteins we have identified 26 disease associated mutations within their signal peptide domains, 14 mutations of which have been experimentally shown to impair the signal peptide function and thus influence protein transportation. We took advantage of SignalP 3.0 predictions to characterize the signal peptide prediction score differences between the mutant and the wild-type alleles of each mutation, as well as 189 previously uncharacterized single nucleotide polymorphisms (SNPs) found to be located in the signal peptide domains of 165 human proteins. Comparisons of signal peptide prediction outcomes of mutations and SNPs, have implicated SNPs potentially impacting the signal peptide function, and thus the cellular localization of the human proteins. The majority of the top candidate proteins represented membrane and secreted proteins that are associated with molecular transport, cell signaling and cell to cell interaction processes of the cell. This is the first study that systematically characterizes genetic variation occurring in the signal peptides of all human proteins. This study represents a useful strategy for prioritization of SNPs occurring within the signal peptide domains of human proteins. Functional evaluation of candidates identified herein may reveal effects on major cellular processes including immune cell function, cell recognition and adhesion, and signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号