首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When F(-) cells are mixed with an excess of Hfr cells there is a lethal event which results in a decrease in the number of F(-) survivors. We have described and discussed the parameters affecting this phenomenon of lethal zygosis, and these include the cultural conditions of both donor and recipient cells prior to mixing and the use of aeration throughout the period of the experiment. The absence of lethal zygosis with filtrates and supernatant fluids from donors suggests a dependence on direct cell-cell contact as found in conjugation. The phenomenon, which is normally observed in liquid media, also occurs on solid media, and use of these two methods has allowed examination of strains of different mating types. Whereas most Hfr strains capable of producing normal yields of recombinants showed killing activity, no F(+) and only one F' donor produced lethal zygosis. Only F(-) strains were sensitive to this phenomenon. The relationship between lethal zygosis and the various stages of conjugation is discussed.  相似文献   

2.
Summary Hfr, F+, and F-prime cells are, unlike F cells, insensitive to an excess of Hfr donor cells, indicating that there is an F factor mediated immunity to lethal zygosis (Ilz). Results with Flac episomes carrying traJ, traS or various polar mutations in the tra region indicate that this immunity is independent of surface exclusion, of traJ control, and of all known genes within the tra operon. However, analysis of a series of strains with deletions in the F factor, extending from the right into the tra region, suggests that a gene for immunity to lethal zygosis is located within the tra region. We therefore conclude that Ilz is genetically complex, and present a hypothesis to account for these results.  相似文献   

3.
Use of nonselective medium for plating cells following mating has revealed that Rec recipient strains of E. coli may be killed as a result of conjugation. Sensitivity of RecA-, RecB-, and RecC- recipients increases with ratio of donor: recipient cells in mating mixtures and with time of mating. A Rec+ recipient shows no lethal zygosis in these experiments performed without aeration. Cell contact does not seem to be responsible for the sensitivity of Rec- strains, since lethality is prevented when cell contact is permitted but DNA transfer is not. Thus, an event(s) occuring subsequent to entry of donor DNA appears to cause lethality in Rec- recipients.  相似文献   

4.
Summary We find that diaminopimelic acid in the recipient membrane is released into the medium during bacterial matings, indicating that membrane damage was inflicted on the recipient by the donor, probably for forming a channel for DNA transfer. When the damage is extensive, as in matings with an excess of Hfr bacteria, the F- bacteria are killed (lethal zygosis). The transfer of a large amount of DNA in Hfr matings appears to enhance the killing. In analogous F+xF- (Nalr) matings, on the other hand, killing of F- bacteria does not occur unless F plasmid transfer is inhibited by a substance like nalidixic acid. The F- bacteria are killed, suggesting that F plasmids contain genes that express immunity to lethal zygosis in the recipient. For example, bacteria containing surface exclusion-deficient mutants of F plasmids, such as traS - and traT -, induce lethal zygosis in F- bacteria and are susceptible to it. Various tra - polar mutants that abolish surface exclusion are also susceptible to lethal zygosis when mated with Hfr bacteria. Kinetic experiments indicate that in F+ (wild type) x F- matings, immunity to lethal zygosis is expressed in the F- recipient within 1/4 division time, whereas a complete expression of surface exclusion requires more than 1 division time. Thus, a complete change in all receptor sites seems to be required for the expression of surface exclusion.  相似文献   

5.
Derepression of F factor function in Salmonella typhimurium   总被引:9,自引:0,他引:9  
In Salmonella typhimurium LT2 the F factor of Escherichia coli K-12 replicates normally but is repressed; Flac+ cells give no visible lysis on solid media with male-specific phages, low frequency transfer of Flac+ (0.001-0.007 per donor cell), few f2 infective centers (0.002-0.006 per cell), and they propagate male-specific phages to low titers. Thus they display a Fin+ (fertility inhibition) phenotype. This repression, owing to pSLT, a 60 Mdal plasmid normally resident in S. typhimurium, was circumvented by the following materials: (i) Flac+ plasmids from E. coli with mutations in finP or traO; (ii) a S. typhimurium line which had been cured of pSLT; (iii) pKZl, a KmR plasmid in the same Inc group as pSLT, which caused expulsion of pSLT and made Fin- lines; (iv) F-Fin- mutants which originated spontaneously and which are present in most Hfr strains of S. typhimurium. Strains which are derepressed for F function by the above methods give visible lysis on solid media with male-specific phages, ca. 1.0 Lac+ recombinants per donor cell in conjugal transfer, ca. 0.82 f2 infective centers per cell, over 80% of cells with visible F pili, and propagation of male-specific phages to high titer. These data confirm earlier observations that pSLT represses F by the FinOP system. In addition, it shows that there is no other mechanism which represses F function in S. typhimurium. If donor function is derepressed by one of the above methods, and if rough recipient strains are used, F-mediated conjugation in S. typhimurium LT2 is as efficient as in E. coli K-12.  相似文献   

6.
The number of viable F cells decreases when Escherichia coli recipient cells are mixed with an excess of Hfr cells. Evidence is presented showing that lethal zygosis was accompanied by changes in the physiology of the recipient cells, including (i) inhibition of deoxyribonucleic acid synthesis, (ii) inhibition of β-galactosidase induction, (iii) altered transport and accumulation of galactosides, and (iv) leakage of β-galactosidase into the supernatant fluid. The results are discussed in terms of possible conjugation-associated changes that, at high Hfr to F ratios, lead to lethal zygosis.  相似文献   

7.
Summary We have isolated Escherichia coli F mutants which, when mated with either Hfr or F, can form stable mating aggregates well but produce transconjugants with reduced frequencies. Selection procedure and other tests rule out the possibility that they are Rec strains. These mutants can be classified into two types: type I mutants can induce conjugal DNA replication in the donor, yet form transconjugants poorly; whereas, type II mutants induce conjugal DNA replication with poor efficiencies in the donor. Further tests indicate that type I mutants are very sensitive to lethal zygosis and their membranes, both inner and outer, show alterations in protein composition, whereas type II mutants are insensitive to lethal zygosis, and have an obvious alteration in the protein composition of their outer membrane. These results suggest that type I is defective in transconjugant formation primarily due to a change in the inner membrane, whereas type II is defective in generating a mating signal, which induces donor conjugal DNA replication, due to an alteration in the outer membrane.  相似文献   

8.
F(+) strains of Escherichia coli infected with donor-specific bacteriophage such as M13 are sensitive to bile salts. We show here that this sensitivity has two components. The first derives from secretion of bacteriophage particles through the cell envelope, but the second can be attributed to expression of the F genes required for the formation of conjugative (F) pili. The latter component was manifested as reduced or no growth of an F(+) strain in liquid medium containing bile salts at concentrations that had little or no effect on the isogenic F(-) strain or as a reduced plating efficiency of the F(+) strain on solid media; at 2% bile salts, plating efficiency was reduced 10(4)-fold. Strains with F or F-like R factors were consistently more sensitive to bile salts than isogenic, plasmid-free strains, but the quantitative effect of bile salts depended on both the plasmid and the strain. Sensitivity also depended on the bile salt, with conjugated bile salts (glycocholate and taurocholate) being less active than unconjugated bile salts (deoxycholate and cholate). F(+) cells were also more sensitive to sodium dodecyl sulfate than otherwise isogenic F(-) cells, suggesting a selectivity for amphipathic anions. A mutation in any but one F tra gene required for the assembly of F pili, including the traA gene encoding F pilin, substantially restored bile salt resistance, suggesting that bile salt sensitivity requires an active system for F pilin secretion. The exception was traW. A traW mutant was 100-fold more sensitive to cholate than the tra(+) strain but only marginally more sensitive to taurocholate or glycocholate. Bile salt sensitivity could not be attributed to a generalized change in the surface permeability of F(+) cells, as judged by the effects of hydrophilic and hydrophobic antibiotics and by leakage of periplasmic beta-lactamase into the medium.  相似文献   

9.
M T Hansen 《Mutation research》1982,106(2):209-216
The sensitivity to psoralen plus near-ultraviolet radiation (PUVA) was compared in a pair of E. coli strains differing at the acrA locus. Survival was determined for both bacteria and phage lambda. AcrA mutant cells were 40 times more sensitive than wild type to the lethal effect of PUVA. Free lambda phage exposed to PUVA survived as well when plated on acrA mutants as on wild type. In contrast, prophage lambda CI857 ind carried in lysogenic acrA strains was hypersensitive to PUVA. The enhanced sensitivity of bacterial and lambda DNA, when inside acrA cells, was paralleled by an increased photobinding of radiolabelled psoralens in the mutant. Binding was increased specifically to DNA rather than to nucleic acids in general. The difference in psoralen-binding ability determined by the acrA gene persisted after permeabilizing treatment of the cells. The results suggest that the acrA mutation causes an alteration specifically in the environment of the cellular DNA so as to allow increased intercalation and photobinding of psoralens.  相似文献   

10.
In the study of the relationship between bacteriophage and strains of staphylococci showing inhibition, slight differences were observed in the ability to adsorb phage between staphylococci of full phage sensitivity and those showing inhibition by phage. Only a few plaques were produced by inhibitory phages adsorbed on strains showing inhibition, whereas almost all of the phages adsorbed on corresponding phage-propagating strains produced plaques. Some strains showing inhibition were converted to full sensitivity to certain phages by heat shock or trypaflavine treatment. Treated strains adsorbed inhibitory phages to almost the same degree as nontreated strains, but most of the phages adsorbed on treated strains produced plaques. Killing was not always observed in cells adsorbing inhibitory phages. These results suggest that inhibition is not due to low adsorption rates, but rather to plaque formation by a small number of the sensitive fraction of the population and overgrowth by nonlysed cells.  相似文献   

11.
Complications of chemotherapy, such as appearance of multidrug resistance, have persuaded researchers to consider phage therapy as a new method to combat bacterial infections. In vitro experiments were performed to assess the therapeutic value of genetically modified phages for controlling gastrointestinal Escherichia coli O157:H7 cells in Luria–Bertani (LB) media and contaminated cow milk. We constructed a modified nonreplicating M13-derived phage expressing a lethal catabolite gene activator protein (CAP) that is a Glu181Gln mutant of CAP. The modified phagemid was propagated in the lethal CAP-resistant strain XA3DII. Time–kill assay experiments showed a considerable reduction in the number of surviving bacteria in both LB media and contaminated cow milk. Our further study using other test strains demonstrated that the host range of lethal phage is limited to E. coli strains that produce pili. This study provides a possible strategy for the exploitation of genetically engineered nonlytic phages as bactericidal agents by minimizing the risk of release of progeny phages and endotoxins into the environment. The phage was engineered to remain lethal to its bacterial target, but incapable of replicating therein. Furthermore, the addition of an inducer to express the lethal protein is not required.  相似文献   

12.
Ultraviolet irradiation or nitrosoguanidine treatment of Escherichia coli K-12 strain JE3100 (F'(8)/fla pil) led to the isolation of six mutants defective in F pili function. The defects were shown to be caused by mutations in the F factor. The mutants retained conjugal fertility, although they were less efficient than parental F'(8) strain, and continued to synthesize F pili. Three of the mutants (strains KE196, 198, and 200) had lost sensitivity to male-specific MS2 phage, and the other three (strains KE161, 163, and 164) were insensitive to Qbeta and f1 as well as MS2 phages. F pili on strains KE196, 198, and 200 cells continued to adsorb MS2 phage, whereas those of strains KE161, 163, and 164 did not adsorb MS2 phage. The correlation of the mutant phenotypes with those of other F mutants reported in the literature is discussed.  相似文献   

13.
The colicinogenic B factor, transferred from Escherichia coli strain K77 (and termed ColB2-K77 or ColB2) to an E. coli K12 F(-) strain, is capable of promoting its own transfer to other K12 F(-) strains at a low rate (from LFC cultures) which can be increased under special conditions (HFC cultures). LFC cultures of K12 (ColB2)(+) F(-) strains show a low level of adsorption of F-specific phage particles which also increases under HFC conditions. The ColB2 factor is thus inferred to be an F-like sex factor which is repressed in its fertility. This repression is concluded to be due to a cytoplasmic repressor since, when ColB2 is present in cells containing an F factor (either autonomous or integrated), F fertility is also repressed as shown by the inability of such (ColB2)(+)F(+) [or (ColB2)(+)Hfr] strains to plaque F-specific phages, and by a reduction in the level of chromosomal transfer from such strains, compared to the corresponding F(+) (or Hfr) control strains. Mutants of the ColB2 factor in which fertility is no longer repressed (fertility derepressed or Fdr mutants) have been isolated. The ColB2Fdr mutant strains do not appear to be able to mobilize chromosomal transfer, although they have acquired F-specific phage sensitivity demonstrable by plaque formation and they transfer their colicin factor at high frequency and are well piliated. The Fdr mutation is presumed to result in the inability to synthesize the cytoplasmic fertility repressor since the ColB2Fdr factor does not repress the fertility of an F factor when present in the same host strain. A fertility-repressed drug resistance factor of the R(f) type is not stable in the presence of a ColB2 factor in the same cell and is eliminated in about 10% of the cells per generation. In contrast, another factor characteristic of the R(i) type is fully compatible with ColB2. Under conditions artificially stabilizing (ColB2Fdr)(+) (Rf)(+) strains, the enhanced fertility of ColB2Fdr is not repressed by the presence of the R factor, nor does the presence of R(f) in the intermediate strain of an HFC (for ColB2) system inhibit the normal increase in ColB2 transmissibility. It is concluded that the repressors of R(f) and ColB2, although both active on F fertility, are different; this may indicate that at least two independently repressible cistrons are involved in the expression of fertility characteristics.  相似文献   

14.
The relationship between growth factor responses and androgen-induced cell proliferation was studied in a mouse renal tumor (RAG) cell line, a hybrid (F614B16) rat prostate x RAG cell line, and an 8-azaguanine-resistant revertant of the F614B16 cell line. The hybrid F614B16 cells are very sensitive to androgens; treatment with 20 nM 5 alpha-dihydrotestosterone accelerated cell growth in the presence or absence of serum. In contrast, the RAG cells and 8-azaguanine-resistant F614B16 cells responded to 5 alpha-dihydrotestosterone only in the absence of serum. Variation in the proliferative response to androgens among these cell lines was associated with variation in growth factor sensitivity. Basic fibroblast growth factor (bFGF) stimulated basal and androgen-induced growth of F614B16 cells in serum-free and serum-supplemented media, whereas it inhibited RAG cell growth. Basic FGF stimulated basal, but not androgen-induced growth of revertant F614B16 cells. The cell lines also differed in sensitivity to epidermal growth factor, which had no effect on hybrid cell growth but inhibited RAG and revertant cell growth in a dose-dependent fashion in serum-free media. The results of these studies suggest that androgen-sensitivity is associated with a positive response to FGF and insensitivity to exogenous epidermal growth factor.  相似文献   

15.
V N Gorelov  T S Il'ina  G B Smirnov 《Genetika》1979,15(7):1206-1220
Assuming the similarity of the processes of illegitimate recombination, such as deletion formation, with the process of F' plasmid formation, we have undertaken the study of the influence of recA- and seg- alleles of Hfr donor on the F' plasmid formation. The data obtained demonstrate the strong influence of donor genotype on the frequency of F' plasmid formation and on the nature of F' plasmids formed, thus demonstrating that the most of F' plasmids have been formed via recombination in Hfr donor cells. The recA- mutation decreased the total yield of F' plasmids selected using both proximal and distal Hfr markers and affected drastically the distribution of the F' plasmids inheriting different proximal unselected markers. The existence of recA-dependent and recA-independent modes of F' plasmid formation was demonstrated. The Escherichia coli chromosome contains regions which involve preferentially in recA-dependent (between proA and gal, and clockwise from gal) or recA-independent (between leu and proA, and the region counterclockwise from argE) recombination. The seg-2 mutation causes only partial block of both recA-dependent and recA-independent recombination pathways, however it causes dramatic decrease of genetic exchanges leading to the formation of the type II F' plasmids. Both seg- and recA- mutations decrease the frequency of the formation of Tra+ F' transconjugants. The percent of Tra- transconjugants, which remain sensitive to MS2 and Q beta donor specific phages, also drops significantly under the influence of the recA- and seg- alleles. Thus, the recombination involving the F structure in wild type strains and seg- mutants occures preferentially in the points of F outside the regions essential for transfer and sensitivity to male specific phages, while in recA- and recA-ges- strains the points inside these regions (tra operon) frequently involved in F' plasmid looping out. There exist more strict correlation between the fertility and sensitivity to phage Q beta than to phage MS2.  相似文献   

16.
When Streptomyces parvulus ATCC 12434 was crossed with a plasmid-free S. lividans 66 derivative, some S. lividans exconjugants contained plasmid DNA, pIJ110 (13.6 kb). In a similar way, pIJ408 (15.05 kb) was found after mating S. glaucescens ETH 22794 with S. lividans. CCC DNA was not visualized in the donor strains. pIJ110 and pIJ408 each originates from a larger replicon, probably the chromosome, of S. parvulus or S. glaucescens. Restriction maps of pIJ110 and pIJ408, each for 10 enzymes, were derived. Derivatives of each plasmid were constructed carrying antibiotic-resistance markers (thiostrepton or viomycin) in a nonessential region and each plasmid was cloned into an Escherichia coli plasmid vector (pBR327 or pBR325). pIJ110 and pIJ408 resemble, in their origin, the previously known SLP1 plasmids (such as SLP1.2) which come from integrated sequences in the chromosome of S. coelicolor A3(2). pIJ110 and pIJ408, like SLP1.2, are self-transmissible, elicit the so-called lethal zygosis reaction (pock formation) and mobilize chromosomal markers. The three plasmids, in spite of their very different restriction maps, were found to be related: SLP1.2 and pIJ110 were strongly incompatible, showed complete resistance to each other's lethal zygosis reaction, and shared a segment of DNA with a considerable degree of cross-hybridization; pIJ110 and pIJ408 were weakly incompatible and showed partial resistance to lethal zygosis and a weak DNA cross-hybridization; pIJ408 and SLP1.2 were only distantly related on these criteria. pIJ110, pIJ408, and SLP1.2 hybridized with varying degrees of homology in Southern transfer experiments to DNA from 7 out of 13 of an arbitrary collection of wild-type streptomycetes. Integrated sequences capable of forming plasmids after transfer to S. lividans may therefore be widespread in the genus Streptomyces.  相似文献   

17.
Rhizobium meliloti competitiveness and the alfalfa agglutinin   总被引:13,自引:5,他引:8       下载免费PDF全文
We have isolated two types of isolates having identical colony morphologies from stock cultures of two different Rhizobium meliloti strains. One isolate was agglutinated at a high-dilution titer (HA, highly agglutinable) of the alfalfa agglutinin and was sensitive to phage F20, and the other was agglutinated at a lower agglutinin titer (LA) and was sensitive to phage 16B. All LA isolates from the original slant produced nodules on alfalfa earlier than did HA strains from the original slant. When these HA and LA strains were mixed and used as the inoculum in both vermiculite and field soil in the laboratory, LA strains were always the predominant strains recovered from the nodules. LA strains were obtained from HA cells by selection for resistance to phage F20, and HA strains were obtained from LA cells by selection for resistance to phage 16B. All of the strains with the HA phenotype that were derived from LA strains by phage selection had the nodulation properties of the HA strains from the original slant. Two classes of strains with the LA phenotype were obtained from HA cells by phage selection. One was identical to the original LA strains from the slant, and the other had the nodulation properties of the HA strains. Thus, we have shown that some cell surface properties change the nodulation abilities of R. meliloti strains and, furthermore, that specific phages can be used to enrich for more competitive rhizobia.  相似文献   

18.
A procedure has been developed that allows the propagation of generalized transducing phage directly on cells growing on solid media. After the donor cells are killed with chloroform, the phage can be transferred directly to recipient cells and transductants can be selected.  相似文献   

19.
Temperature sensitive dnaA recipient crossed at the restrictive temperature with HfrH, free from contaminating F+ cells, forms recombinants almost as proficiently as at the permissive temperature. The merozygotes are able to synthesize DNA at 42 degrees C, although the recipient and donor cells do not incorporate 3H-thymine. A substantial fraction of Lac+ recombinants, irrespective of the mating temperature, is temperature resistant (42 C-R); 15% from among those mated at 35 C and 30% from those mated at 42 C. The presence of dnaA mutation in these Lac+ 42 C-R recombinants was ascertained by co-transduction with ilv. Cell division at 42 C is inhibited in the Lac 42 C-R recombinants by acridine orange. The presence of F factor DNA in these recombinants was demonstrated directly by DNA: DNA hybridization. Suppression of dnaA mutation in Lac+ 42 degrees C-R recombinants and their sensitivity to acridine orange at 42 degrees C suggests that at least part of the F factor is integrated into the recombinant chromosome. A large fraction of the Lac+ 42 degrees C-R recombinants (up to 80%) is sensitive to male phage R17 and fertile. In crosses with HfrC there is a marked decrease of recombination frequency at 42 degrees C in the dnaA recipient. The fraction of Lac+ 42 degrees C-R recombinants is low (up to 10%) and the 42 degrees C-R recombinants are neither sensitive to male phage nor fertile. The results are discussed on the basis of the previously proposed model of post-conjugational recombination.  相似文献   

20.
We describe a novel proximity-dependent inhibition phenotype of Escherichia coli that is expressed when strains are cocultured in defined minimal media. When cocultures of "inhibitor" and "target" strains approached a transition between logarithmic and stationary growth, target strain populations rapidly declined >4 log CFU per ml over a 2-h period. Inhibited strains were not affected by exposure to conditioned media from inhibitor and target strain cocultures or when the inhibitor and target strains were incubated in shared media but physically separated by a 0.4-μm-pore-size membrane. There was no evidence of lytic phage or extracellular bacteriocin involvement, unless the latter was only present at effective concentrations within immediate proximity of the inhibited cells. The inhibitory activity observed in this study was effective against a diversity of E. coli strains, including enterohemorrhagic E. coli serotype O157:H7, enterotoxigenic E. coli expressing F5 (K99) and F4 (K88) fimbriae, multidrug-resistant E. coli, and commensal E. coli. The decline in counts of target strains in coculture averaged 4.8 log CFU/ml (95% confidence interval, 4.0 to 5.5) compared to their monoculture counts. Coculture of two inhibitor strains showed mutual immunity to inhibition. These results suggest that proximity-dependent inhibition can be used by bacteria to gain a numerical advantage when populations are entering stationary phase, thus setting the stage for a competitive advantage when growth conditions improve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号