首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Growth of white clover was investigated in permanent grasslandcut three or five times per year. The influence of cutting frequencyand nitrogen fertilization on dry-matter yield, leaf-area distributionand the distribution of photosynthetically active radiationwithin the canopy were examined. In the five cut treatments, total dry-matter yield was nearlyequal, with and without nitrogen. However, nitrogen practicallyeliminated white clover. Leaf-area distribution showed characteristicpatterns for the different treatments. The small proportionof white clover in the treatment with nitrogen fertilizationwas thought to be due to the large leaf area of the other speciesat heights which white clover could not attain. This conclusionwas supported additionally by the radiation measurements withinthe canopy. The sunlit fractional area within canopy layers was measuredwith ‘quantum sensors’ and calculated from canopytransmission measured with tube solarimeters. The leaf areaindex of white clover was highly correlated (r2 = 0.68) withthe sunlit fractional area above the canopy layers where whiteclover was present. This response of white clover leaf growth to the light regimeis discussed in relation to the potential petiole growth. White clover, Trifolium repens L., permanent grassland, irradiance distribution, sunlit fractional area, petiole extension, leaf area, dry matter, stratified clipping  相似文献   

2.
The morphology of white clover is very sensitive to the lightenvironment, especially to the ratio of red:far-red light andto photon irradiance. However, less is known about the effectsof blue light on clover morphogenesis. Cuttings of white cloverwere grown for 56 d in two controlled chambers receiving lightwith similar photosynthetic efficiency and phytochrome photoequilibriumstate but different levels of blue light: some plants were grownunder orange light (very low blue light, 0.02 µmol m-2s-1)or under white light containing blue light (83 µmol m-2s-1).Other plants were switched from white light to orange lightorvice versa,after 30 d. The absence of blue light modifiedthe growth habit of clover and raised the laminae in the upperlayer of the canopy by increasing petiole length, and petioleangle from the horizontal, and by raising stolons above theground surface. Moreover, the absence of blue light had no effecton total leaf area and total dry weight per plant, but increasedthe leaf area and biomass of petioles of the main axis. Largerpetioles and laminae were associated with the allocation ofmore dry weight to the petiole at the same petiole thicknessbut with thinner laminae. These results indicate that a decreasein blue light is involved in the perception of, and adaptationto, shading by the plant.Copyright 1997 Annals of Botany Company Biomass allocation; blue light; growth habit; leaf area; light quality; photomorphogenesis; Trifolium repensL.; white clover  相似文献   

3.
Removal of the blade from the leaf subtending the first flowerbud on Cyclamen persicum ‘Swan Lake’ plants causedthe petiole of that leaf to senesce, but had no effect on thegrowth of the flower peduncle in the debladed petiole's axil.A 10 mg NAA l–1 application generally had no effect onpetiole senescence, peduncle elongation or flowering date whenapplied to the cut end of the petiole after blade removal. A25 mg GA3 l–1 application or a combination of 25 mg GA3l–1 application or a combination of 25 mg GA3 l–1plus 10 mg NAA l–1 delayed petiole senescence and enhancedpeduncle elongation and subsequent flowering. No treatment significantlyaltered peduncle length at the time of flowering. Cyclamen persicum Mill, ‘Swan Lake’, tissue receptivity, flowering, GA3, NAA  相似文献   

4.
The effects of varying P and K supplies on the growth and morphologyof white clover were investigated in a pot experiment. Plantswere treated with three rates of potassium (K) and four ratesof phosphorus (P) in factorial combination, and five harvestswere taken between August 1993 and February 1994. During establishment,shoot and leaf development were more adversely affected by Pthan by K deficiency but, by the final growth period, K deficiencywas the more limiting to growth, causing dramatic reductionsin leaf area index (LAI), numbers of growing points, and stolonand root masses. The adverse affects of K deficiency on shootdevelopment were attributed to the curtailment of petiole andlamina expansion which have major requirements for K. It wasnoted that, under K deficiency, proportionately less assimilatewas partitioned to leaf production than to stolon and root growth;this may be an adaptation enabling K-deficient plants to exploitnutrient supplies in adjacent localities. The results suggestthat, provided white clover can withstand ‘moderate’P stress during establishment, its persistence in swards willprobably be limited more by K deficiency than by low or inadequateP supplies. However, because the experiment was conducted outsidethe normal growing season and with only a single white clovercultivar, it is inappropriate to make any generalizations regardingthe effects of P and K nutrition on white clover in the field.Copyright1998 Annals of Botany Company Mineral nutrition, morphology, phosphorus, potassium,Trifolium repensL.  相似文献   

5.
ROBSON  M. J. 《Annals of botany》1982,49(3):321-329
Simulated swards of each of two selection lines of Lolium perennecv. S23 with ‘fast’ and ‘slow’ ratesof ‘mature tissue’ respiration were establishedin growth rooms at 20/15 °C day/night temperatures and studiedover four successive regrowth periods of 46, 30, 26 and 53 daysduration. The ‘slow’ line outyielded the ‘fast’,both in harvestable shoot (above a 5 cm cut) and in root andstubble. Its advantage increased over successive regrowth periodsto 23 per cent (total biomass). Gas analysis measurements onthe entire communities (including roots), during the final regrowthperiod, showed that the ‘slow’ line had a 22–34per cent lower rate of dark respiration per unit dry weight.This enabled it to maintain its greater mass of tissue for thesame cost in terms of CO2 efflux per unit ground area. Halfthe extra dry weight produced by the ‘slow’ line,relative to the ‘fast’, could be attributed to itsmore economic use of carbon. The rest could be traced to a 25per cent greater tiller number which enabled the ‘slow’line to expand leaf area faster (though not at a greater rateper tiller), intercept more light and fix more carbon, earlyin the regrowth period. Lolium perenne L., ryegrass, respiration, maintenance respiration, tiller production, simulated swards, canopy photosynthesis, carbon economy  相似文献   

6.
A comparative study has been made of the penetration of solarradiation through leaf canopies of contrasting structure. Forthis purpose experiments were undertaken on (a) Gladiolus withnearly vertical leaves, (b) Raphanus sativus with its rosettehabit, (c) two varieties of Linum usitatissimum, one an unbranchedflax type and the other a multi-stem linseed type, and (d) Agrostemmagithago where the apical leaves are sharply inclined and thebasal leaves disposed in a horizontal plane. Light gradientswere evaluated at different densities and at varying stagesof development by means of probes of silicon cells. Using afilter (cut off point 72-5 µ) simultaneous measurementswere made of the infra-red and ‘visible’ radiation.The distributions of the leaf and stem area through the canopywere recorded so that light interception per unit surface couldbe assessed. The shape of the light gradient between the top and bottom ofthe canopy was sigmoidal for Gladiolus but much less so forthe other species. Attenuation of the infra-red radiation withdepth was markedly smaller. For valid estimates of the extinction coefficient (K) it isessential to include stem areas; that is on theoretical groundshalf the total stem surface. The values of K were low for allspecies and in particular for Gladiolus. The relationship betweenlight attenuation and leaf area was approximately exponential.For Gladiolus it was established that K can decrease with increasingdensity but no changes with depth in the canopy were evident.The implications of these observations in terms of canopy structureare discussed.  相似文献   

7.
Gossypium hirsutum L. (upland cotton) and G. barbadense L. (Pimacotton) are two of the most important fibre producing cottonspecies in cultivation. When grown side-by-side in the field,G.hirsutum has higher photosynthetic and transpiration rates (Luet al., 1997. Australian Journal of Plant Physiology24: 693–700).The present study was undertaken to determine if the differencesin physiology can be explained by leaf and canopy morphologyand anatomy. Scanning electron microscopy was used to comparethe leaf anatomy of field-grown upland (‘Delta’and ‘Pine Land 50’) and Pima (‘S6’)cotton. Compared to G. hirsutum, mature leaves of G. barbadenseare larger and thinner, with a thinner palisade layer. G. barbadenseleaves show significant cupping or curling which allows fora more even absorption of insolation over the course of theday and much more light penetration into the canopy. AlthoughG. barbadense leaves have a 70–78% higher stomatal densityon both the abaxial and the adaxial surfaces, its stomates areonly one third the size of those of G. hirsutum. This resultsin G. barbadense having only about 60% of the stomatal surfacearea per leaf surface area compared to G. hirsutum. These resultsare indicative of the anatomical and physiological differencesthat may limit the yield potential of G. barbadense in certaingrowing environments. Copyright 2000 Annals of Botany Company Cotton, leaf anatomy, leaf development, photosynthesis, Gossypium hirsutum, Gossypium barbadense, stomatal density  相似文献   

8.
White clover plants were subjected to either a short-term developingwater stress or long-term stable levels of water deficit on‘water stress columns’. The short-term stress reducedplant water status to –2?0 MPa over 15 d. The water stresscolumns imposed only mild levels of water stress (a reductionof 0?35 MPa in leaf water potential for the more severe treatment)but these were maintained for several weeks. The absolute growthof plants on the control columns was maintained throughout theexperimental period. Vegetative growth was measured. Stolon, petiole, and laminagrowth were all reduced to some extent when plants were grownsymbiotically. The two regimes gave comparable results. Whennitrate was supplied there was no effect of water stress. Aconsiderably reduced absolute growth rate did not result ina similar decrease in final organ size. Stolon growth was mostreduced by water stress. Leaf death during water stress wasas important as changes in growth in determining final dry matteryield. Consequently, the yield of petiole and lamina from plantsgrown without supplied nitrate on the water stress columns waslower than that of stolon at the end of the treatment period. The merits of the water stress column system for imposing long-termwater deficit are discussed. Key words: Trifolium repens, white clover, water stress, vegetative growth  相似文献   

9.
The objectives of this study were to identify the vascular connectionsfrom roots to upper axial bundles in one genotype ofTrifoliumrepensL. ‘Grasslands Kopu’, identify pathways followedby the transpiration stream, and establish whether these pathwayscould account for previously-observed patterns of clonal integration.The study provides new information on vascular connections betweenroot and parent and branch stolons at nodes possessing botha root and a branch, and to the first two leaves on branch stolons.A nodal root is connected to the lower nearside axial bundleof the parent stolon but to both lower and upper nearside axialbundles of the branch. Upper sympodia provide a long-distancetransport pathway from a parent stolon to the apex of branchstolons. Lower sympodia are functionally different, providingshort-distance transport to structures in close proximity tothe source root. This is consistent with observed patterns ofclonal integration inT. repensand may provide a simple architecturalmechanism facilitating foraging.Copyright 1998 Annals of BotanyCompany Acid fuchsin, clonal integration, foraging, physiological integration, serial sections, white clover,Trifolium repens(L.), vascular architecture, xylem transport.  相似文献   

10.
HUME  D.E. 《Annals of botany》1991,67(2):111-121
A detailed morphological study of three prairie grass cultivars(Bromus willdenowii Kunth) was conducted under ‘vegetative’and ‘reproductive’ growth conditions (short andlong photoperiods) and at different temperatures. Perennialryegrass (Lolium perenne L.) and Westerwolds ryegrass (Loliummuhiflorum Lam.) were compared during vegetative growth. Prairie grass had higher leaf appearance rates (leaves per tillerper day) and lower site filling (tillers per tiller per leafappearance interval) than the ryegrass species. Tillering rates(tillers per tiller per day) were also lower, except under vegetativeconditions at 4C. Low tiller number in prairie grass was notdue to lack of tiller sites but a result of poor filling ofthese sites. Lower site filling occurred because of increaseddelays in appearance of the youngest axillary tiller and lackof axillary tillers emerging from basal tiller buds. In prairiegrass, no tillers came from coleoptile buds while only occasionallydid prophyll buds develop tillers. Low tiller number in prairiegrass was compensated for by greater tiller weight. Prairiegrass had more live leaves per tiller, greater area per leafand a high leaf area per plant. Considerable variation between cultivars was found in prairiegrass. The cultivar ‘Bellegarde’ had high leaf appearance,large leaves and rapid reproductive development, but had lowlevels of site filling, tillering rate, final tiller numberand herbage quality during reproductive growth. ‘Primabel’tended to have the opposite levels for these parameters, while‘Grasslands Matua’ was intermediate and possiblyprovided the best balance of all plant parameters. prairie grass, Bromus willdenowii Kunth, perennial ryegrass, Lolium perenne L., Westerwolds ryegrass, Lolium multiflorum Lam., temperature, photoperiod, leaf appearance, leaf area, tillering, site filling, tillering sites, yield  相似文献   

11.
Simulated mixed swards of perennial ryegrass (Lolium perenneL. cv. S23) and white clover (Trifolium repens L. cv. S100)were grown from seed under a constant 10°C day/8°C nighttemperature regime and their growth, and carbon and nitrogeneconomies examined. The swards received a nutrient solution,every second day, which contained either high (220 µgg–1) or low (40 µg g–1) nitrate N. The High-N swards had rates of canopy photosynthesis and drymatter production (over the linear phase of growth) similarto those previously shown by mixed swards at high temperature.The Low-N swards grew more slowly; canopy photosynthesis, ata given LAI, was similar to that at High-N but lower LAI's weresustained. Clover increased its contribution to total carbonuptake and total dry weight throughout the period in the Low-Ntreatment and, despite the fact that grass took up most of theavailable nitrate, clover maintained a consistently higher Ncontent by virtue of N2-fixation. At High-N, grass dominated throughout the measurement period.Earlier, when plants grew as spaced individuals, clover grewless well than grass, but once the canopy was closed it hada similar relative growth rate and thus maintained a steadyproportion of total sward dry weight. It is proposed that earlyin the development of the crop, leaf area production is thelimiting factor for growth, and that in this respect cloveris adversely affected by low temperature relative to grass.Later, as the LAI of the crop builds up, and the canopy becomesfully light intercepting, net canopy photosynthesis plays amore dominant role and here the higher photosynthetic rate perunit leaf area of the clover is crucial. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, low temperature, nitrogen, photosynthesis  相似文献   

12.
Cordeauxia edulis (Somalia and Ethiopia), andStuhlmannia moavii(Tanzania, Kenya and Madagascar) are evergreen shrubs or smalltrees of dry areas. They have similar leaf anatomy as revealedby resin sectioning and scanning electron microscopy. The cuticleis extremely thick and all vascular bundles lack bundle sheathextensions. The most unusual feature is the mesophyll, threeto seven layers consisting entirely of cylindrical palisadecells with lateral walls capable of changing vertical lengthby folding in a concertina-like manner. The matching outwardfolds of two adjacent cells always remain attached by meansof a row of wall thickenings (‘pegs’). The pegscan elongate, especially so between the widely separated mesophyllcells that occupy the substomatal chamber area. The unattachedflexible inward wall folds enable these ‘concertina’cells to shorten or lengthen vertically without disrupting cellinterconnections in the interior of each relatively long-livedleaf as it periodically loses and gains water. Concertina cellsmay be an anatomical adaptation allowing these leaves to remainevergreen and survive extended periods of drought and yet tostore water quickly when it becomes available. Leguminosae; Caesalpinioideae; Cordeauxia ; Stuhlmannia ; ‘concertina’ mesophyll cells; desert adaptation; hollow glandular trichomes; leaf anatomy; wall thickenings  相似文献   

13.
Plants of two cultivars of Callistephus chinensis (Queen ofthe Market and Johannistag) were grown in 8 h of daylight perday with one of the following treatments given during the 16h dark period: (a) darkness—‘uninterrupted night’,(b) I h of light in the middle of the dark period—a ‘nightbreak’, (c) I min of light in every hour of the dark period—‘cycliclighting’, (d) light throughout—‘continuouslight’. The plants receiving uninterrupted dark periods remained compactand rosetted in habit with small leaves, while leaf expansion,stem extension, and flower initiation were promoted in all threeillumination treatments (b, c, d). Although these three treatmentsproduced similar increases in leaf area, continuous light wasthe most effective for the promotion of both stem growth andflower initiation while cyclic lighting was generally more effectivethan a I-h night break. Continuous light also caused more dry matter to be divertedto stems at any given vegetative dry weight and it was shownthat the stem weight ratio of both varieties was correlatedwith stem length.  相似文献   

14.
Microswards of white clover (Trifolium repens L.) were grownin controlled environments at 10/7, 18/13 and 26/21 °C day/nighttemperatures. The vertical distribution of leaves of differentages and their rates of 14CO2-uptake in situ were studied. Extending petioles carried the laminae of young leaves throughthe existing foliage. A final position was reached within 1/4to 1/3 of the time between unfolding and death. Newly unfoldedleaves had higher rates of 14CO2-uptake per leaf area than olderones at the same height in the canopy. At higher temperatures,the decrease with age was faster. However, the light-photosynthesisresponse of leaves which were removed from different heightsin the canopy varied much less with leaf age than did the ratesof 14CO2-uptake in situ. The comparison of the rates of 14CO2-uptake in situ with thelight-photosynthesis response curves suggests that young leavesreceive more light than older ones at the same height in thecanopy. This would imply that young white clover leaves havethe ability to reach canopy positions having a favourable lightenvironment. This ability may improve the chances of survivalof white clover in competition with other species. Trifolium repens L., white clover, photosynthesis, canopy, leaf age, 14CO2-uptake, ecotypes, temperature  相似文献   

15.
Petioles of the celery-leaved buttercup (Ranunculus sceleratusL.) elongate in response to treatment with ethylene in air whenthe leaf blades are attached. An enhanced rate of elongationgrowth also occurs when the leaves are submerged. Submergencecauses an increase in extractable ethylene gas within the tissues,and these levels appear to approach those required to saturatethe ethylene-promoted elongation growth response. Coincidentwith a rise in ethylene in the tissues is a dramatic increasein the level of I-aminocyclopropane-1-carboxylic acid (ACC),the precursor of ethylene. Both the petiole and leaf blade tissueshave a similar capacity to evolve ethylene in the presence ofadded ACC. However, in air the leaf blade evolves more ethylenefrom endogenous resources than the petiole. The simultaneousincreases in ethylene and ACC levels in submerged tissues areconsidered in terms of the low diffusivity of ethylene in water,the ‘autocatalytic’ effect of ethylene on ethylenebiosynthesis and the rôle of both carbon dioxide and oxygenfluxes in ethylene metabolism of submerged tissues. Ranunculus sceleratus, celery-leaved buttercup, petiole growth, submergence, ethylene metabolism  相似文献   

16.
Measurements of the growth of sainfoin and lucerne were madein the field after cutting on 31 May 1977. Sainfoin reacheda total above-ground dry weight of 408 g m–2 over thegrowing period of 48 days compared with 598 g m–2 in lucerne.Final leaf area indices (LAIs) were 2.8 in sainfoin and 6.1in lucerne. The specific leaf areas (SLAs) for sainfoin wereapproximately half those of lucerne throughout the regrowthperiod. The maximum rates of leaf appearance were 0.12 leavesper day in sainfoin and 0.85 leaves per day in lucerne. Themaximum mean rate of plant extension growth for lucerne of 2.12mm h–1 occurred during the night, whereas, in sainfointhe maximum rate of 1.72 mm h–1 occurred during the day. Measurements of extinction coefficients for PAR ranged from0.45 to 0.89 in sainfoin and from 0 42 to 0.57 in lucerne. Asthe lucerne crop increased in size leaf water potentials andsolute potentials became more negative. In sainfoin leaf waterpotentials remained remarkably high throughout the growth period,solute potentials decreased and turgor potentials increased.The stomatal conductances of the two species were similar. The photosynthetic capacities and rates of dark respirationper unit leaf area in both species were similar. The rate ofcanopy ‘gross’ photosynthesis at 295 W m–2was always greater in lucerne than in sainfoin. This was largelya matter of differences between the species in LAI, althoughat higher LAIs the more erect structure of lucerne leads toa better utilization of photosynthetically active radiation. Onobrychis vicifolia Scop, sainfoin, Medicago sativa L., lucerne, photosynthesis, water relations, temperature, canopy structure  相似文献   

17.
Complete submergence of rice plants (Oryza sativa L. cv. ‘IR42’)in dilute nutrient solution for 3–6 d almost stopped theaccumulation of dry matter, depressed soluble carbohydrate concentrationby over 75% and promoted chlorosis in fully expanded leaves.Increase in fresh weight by the shoots was not impaired. Extensionby the youngest visible leaf was stimulated. Extension by thenext leaf to appear was retarded by submergence. These growthresponses to submergence were associated with a 1-5-fold increasein the partial pressure of endogenous ethylene (ethene). Applying ethylene (0.3–0.35 Pa) in the gas-phase to non-submergedplants reproduced some, but not all, of these effects of submergence.Thus, greater leaf extension and chlorosis of submerged plantscould be attributable to accumulated ethylene but neither theslow relative growth rate nor the decreased extension of leavesemerging after the start of submergence could be so attributed. Two cultivars (‘FR13A’ and ‘Kurkaruppan’)already known to tolerate submergence, differed little fromsubmergence-intolerant ‘IR42’ in their relativegrowth rate and soluble carbohydrate concentration during submergence.However, their underwater leaf extension was less than in ‘IR42’and chlorosis was much less prevalent, especially in ‘FR13A’.Similarly, ethylene supplied to non-submerged plants was a lesseffective promotor of leaf extension and chlorosis in the twosubmergence tolerant cultivars. Application of 1.0 kPa carbondioxide in the gas-phase prevented the chlorosis response toethylene. The results indicate that accumulated ethylene is a likely causeof fast leaf extension and chlorosis in submergence intolerantforms of rice, particularly when amounts of dissolved carbondioxide are minimal. Key words: Oryza sativa L., aeration, ethylene (ethene), stress-tolerance  相似文献   

18.
A method to measure light interception by vegetation canopiesis presented which uses a 3D digitiser and image processingsoftware. The 3D digitiser allows for simultaneous acquisitionof the spatial co-ordinates of leaf locations and orientations.Software for image synthesis is used to make virtual photographsof the real canopy. Information on light interception is derivedfrom the virtual images by using simple features of image analysissoftware. The method is applied to cotton, grapevine and youngmango plants. Calculations are made of light interception atthe canopy level, light partitioning between plant organs, verticalprofiles of light interception, fisheye photographs and leafirradiance distribution.Copyright 1998 Annals of Botany Company 3D digitising, image analysis, light interception,Gossypium hirsutumL.Vitis viniferaL.,Mangifera indicaL., cotton, grapevine, mango, canopy.  相似文献   

19.
HARDWICK  R. C. 《Annals of botany》1987,60(4):439-446
The ‘core-skin’ hypothesis postulates that secondarilythickened plants behave energetically as an inert ‘core’covered by an active ‘skin’, the ‘skin’being two-imensional, the ‘core’ three-dimensional.This would explain the ‘self-thinning ‘or‘–3/2’ rule of plant ecology, that is, the tendencyfor log (dry weight per plant) and log (number of plants perunit area) to progress along a straight line relationship, withslope = – 3/2’. The hypothesis was tested as follows. Plant nitrogen contentwas used as an estimate of the mass of ‘skin’ perplant, and dry weight as an estimate of the mass of the ‘core’.As plants mature the slope of the relationship between y = log(mass of nitrogen per plant) and x = log (mass of dry matterper plant) is expected to decline from an initial value of 1.0towards a final value of 0.66. The intercept of the relationshipis expected to reflect the intrinsic content of ‘skin’per unit of ‘core’. Genotypic variation in thisparameter should cause genotypic differences in the maximumattainable yield of biomass per unit area. The expectations were investigated by fitting the function y= p+qx+r exp – x to 30 sets of data on plant nitrogencontent, plant weight and time in 18 different vegetables. Simplelinear regressions of y on x were fitted to more limited setsof data on weights and nitrogen contents of mature trees. Theexpectations were, with some minor exceptions, confirmed. Nitrogen, yield, plant competition, self-thinning  相似文献   

20.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and their growth and carbon economyexamined. The swards received a nutrient solution daily, whichcontained either High (220 mg l1) or Low (10 mg l–1)nitrate N. Rates of canopy photosynthesis and respiration, and final drymatter yields were similar in the two treatments although theproportions of grass and clover differed greatly. The Low-Nswards were made up largely of clover. The grass plants in theseswards had high root: shoot ratios and low relative photosyntheticrates – both signs of N deficiency – and were clearlyunable to compete with the vigorously growing Low-N clover plants.These had higher relative growth rates and dry matter yieldsthan their High-N counterparts. In the High-N swards clovercontributed around 50 per cent to the sward dry weight throughoutthe measurement period despite having a smaller proportion ofits dry weight in photosynthetic tissue (laminae) than grassover much of it. The latter was compensated for, initially bya higher specific leaf area than grass, and later by a higherphotosynthetic rate per unit leaf weight. The results are discussedin relation to observed declines in the clover content of swardsafter the addition of nitrogen fertilizer in the field. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, nitrogen, photosynthesis, carbon balance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号