首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated spontaneous and transposon insertion mutants of Escherichia coli K-12 that were specifically defective in utilization or in high-affinity transport of D-ribose (or in both). Cotransduction studies located all of the mutations near ilv, at the same position as previously identified mutations causing defects in ribokinase ( rbsK ) or ribose transport ( rbsP ). Plasmids that complemented the rbs mutations were isolated from the collection of ColE1 hybrid plasmids constructed by Clarke and Carbon. Analysis of those plasmids as well as of fragments cloned into pBR322 and pACYC184 allowed definition of the rbs region. Products of rbs genes were identified by examination of the proteins produced in minicells containing various rbs plasmids. We identified four rbs genes: rbsB , which codes for the 29-kilodalton ribose-binding protein; rbsK , which codes for the 34-kilodalton ribokinase ; rbsA , which codes for a 50-kilodalton protein required for high-affinity transport; and rbsC , which codes for a 27-kilodalton protein likely to be a transport system component. Our studies showed that these genes are transcribed from a common promoter in the order rbsA rbsC rbsB rbsK . It appears that the high-affinity transport system for ribose consists of the three components, ribose-binding protein, the 50-kilodalton RbsA protein, and the 27-kilodalton RbsC protein, although a fourth, unidentified component could exist. Mutants defective in this transport system, but normal for ribokinase , are able to grow normally on high concentrations of the sugar, indicating that there is at least a second, low-affinity transport system for ribose in E. coli K-12.  相似文献   

2.
Various methods have been investigated for the isolation and purification of fusion proteins of precursors of human insulin in the form of S-sulfonates, from the biomass of transformed Escherichia coli cells. Fusion proteins were prepared with different sizes and structures of the leader peptide and the poly-His position (inserted for purification by metal chelate affinity chromatography). The fusion proteins contained an IgG-binding B domain of protein A from Staphylococcus aureus at the N-terminus and an Arg residue between the leader peptide of the molecule and the proinsulin sequence, for trypsin cleavage of the leader peptide. Six residues of Cys in proinsulin allow the chemical modification of the protein as a (Cys-S-SO(-)(3))(6) derivative (S-sulfonate), which increases its polyelectrolytic properties and improves the efficiency of its isolation. Various methods of oxidative sulfitolysis were compared with catalysis by sodium tetrathionate or cystine and Cu2+ or Ni2+ ions. An optimum scheme for the isolation and purification of S-sulfonated fusion proteins was developed by the combination of metal-chelating affinity and ion-exchange chromatography. Highly purified (95%) S-sulfonated fusion protein was recovered which was 85% of the fusion protein contained in the biomass of E. coli cells. Folding of fusion protein S-sulfonate occurred with high yield (up to 90-95%). We found that the fusion protein-S-sulfonate has proinsulin-like secondary structure.This structure causes highly efficient fusion protein folding.  相似文献   

3.
Y Park  Y J Cho  T Ahn    C Park 《The EMBO journal》1999,18(15):4149-4156
The Escherichia coli high-affinity ribose transporter is composed of the periplasmic ribose-binding protein (RBP or RbsB), the membrane component (RbsC) and the ATP-binding protein (RbsA). In order to dissect the molecular interactions initiating the transport process, RbsC suppressors for transport-defective rbsB mutations were isolated. These suppressors are localized in two regions of RbsC, which are allele-specific to N- or C-terminal domain mutations of RBP, suggesting that there are two distinct regions of RbsC, each interacting with one of the two domains of RBP. To demonstrate that these two regions provide a homodimeric binding surface for RBP we constructed a dimeric rbsC in which two genes are joined tandemly from head to tail with the addition of a linker. The dimeric RbsC protein is stable and functional in growth and ribose uptake. By exploiting the allele specificity between the domain-specific mutations and their suppressors, we generated all mutation-suppressor combinations in a single rbsB plus the dimeric rbsC genes. Their phenotypes are consistent with the proposal that the binding protein module interacts symmetrically with homodimeric RbsC. The mode of association proposed here for the ribose transport components could be extended to other ABC transporters with similar structural organizations.  相似文献   

4.
5.
Dihydrofolate reductase (DHFR) has been demonstrated to be a versatile "affinity handle" for expression of recombinant proteins. The DHFR "handle" has advantages not only in terms of efficiency of expressing the fusion protein as a soluble form but also in stabilizing unstable polypeptides and facilitating purification of the expressed protein by means of methotrexate-bound affinity chromatography and by making use of the enzyme activity. Fifteen genes encoding different lengths of polypeptides of 5 to 44 amino acids were chemically synthesized and introduced into expression vectors, pTP70-1 or its derivatives. All the polypeptide genes were efficiently expressed in Escherichia coli cells as fusion proteins which show DHFR activity. The respective fusion proteins were highly purified from cell-free extracts by monitoring the DHFR activity at each purification step. The use of methotrexate-bound affinity chromatography was very effective. In order to cut out the polypeptides, the purified fusion proteins were treated with either BrCN or site-specific protease according to the spacer sequence. The objective polypeptide was purified by means of a reversed-phase high-pressure liquid chromatography (HPLC) system. Specific cleavage of the purified fusion protein actually yielded very few peptide fragments, so the assignment and isolation of the objective polypeptide were carried out without difficulty.  相似文献   

6.
A gene fusion approach to simplify protein immobilization and purification is described. A gene encoding the protein of interest is fused to a gene fragment encoding the affinity peptide Ala-His-Gly-His-Arg-Pro. The expressed fusion proteins can be purified using immobilized metal affinity chromatography. A vector, designed to ensure obligate head-to-tail polymerization of oligonucleotide linkers was constructed by in vitro mutagenesis. A linker encoding the affinity peptide, was synthesized and polymerized to two, four and eight copies. These linkers were fused to the 3' end of a structural gene encoding a two-domain protein A molecule, ZZ, and to the 5' end of a gene encoding beta-galactosidase. Fusion proteins, of both types, with zero or two copies of the linker showed little or no binding to immobilized Zn2+, while a relatively strong interaction could be observed for the fusions based on four or eight copies of the linker. Using a pH gradient, the ZZ fusions were found to be eluted from the resin at different pHs depending on the number of the affinity peptide. These results demonstrate that genetic engineering can be used to facilitate purification and immobilization of proteins to immobilized Zn2+ and that the multiplicity of the affinity peptide is an important factor determining the binding characteristics.  相似文献   

7.
Two chimeric proteins have been constructed. One consists of four parts: a portion of the low molecular mass single-chain urokinase-type plasminogen activator (scu-PA-32K, residues 144-411), a 15-mer linker sequence, the C-terminal amino-acid sequence (residues 53-65) of hirudin (Hir), and an RGD sequence derived from the leech protein decorsin, i.e. scu-PA(32 k)-linker-Hir (residues 53-65)-RGD peptide. The other comprises two main segments: scu-PA(32 k) and hirudin into which RGDSP is inserted between its residues 33 and 34, i.e. hirudin (residues 1-33)-RGDSP-hirudin (residues 34-65)-scu-PA(32 k). These two chimeric genes were expressed in Escherichia coli, and the products were purified by Zn2+-chelating Sepharose 4B chromatography and benzamidine Sepharose 6B chromatography. Our results suggested that these two chimeric proteins not only had plasminogen-dependent fibrinolytic activity, but also possessed platelet aggregation inhibitory activity and antithrombin activity.  相似文献   

8.
9.
We developed a method for immunoaffinity purification of Saccharomyces cerevisiae adenylyl cyclase based on creating a fusion with a small peptide epitope. Using oligonucleotide technology to encode the peptide epitope we constructed a plasmid that expressed the fusion protein from the S. cerevisiae alcohol dehydrogenase promoter ADH1. A monoclonal antibody previously raised against the peptide was used to purify adenylyl cyclase by affinity chromatography. The purified enzyme appeared to be a multisubunit complex consisting of the 200-kilodalton adenylyl cyclase fusion protein and an unidentified 70-kilodalton protein. The purified protein could be activated by RAS proteins. Activation had an absolute requirement for a guanine nucleoside triphosphate.  相似文献   

10.
Listeria bacteriophage lytic enzymes are useful for in vitro applications such as rapid, gentle cell disruption, and they provide new approaches as selective antimicrobial agents for destruction of Listeria monocytogenes in contaminated foods. We describe here the amino-terminal modification of three cloned Listeria phage lysin genes (ply), resulting in fusion proteins with a 12-amino-acid leader containing six consecutive histidine residues. The recombinant enzymes retain their native specific activity and can be efficiently overproduced in Escherichia coli. By one-step metal chelate affinity chromatography, active lysins could be purified to more than 90% homogeneity.  相似文献   

11.
Proteins carrying genetically attached polyhistidine tails have been purified using affinity precipitation with metal chelates. DNA fragments encoding four or five histidine residues have been genetically fused to the oligomeric enzymes lactate dehydrogenase (Bacillus stearothermophilus), beta-glucoronidase (Escherichia coli), and galactose dehydrogenase (Pseudomonas fluorescens) as well as to the monomeric protein A (Staphylococcus aureus). The chimeric genes were subsequently expressed in E. coli. The engineered enzymes were successfully purified from crude protein solutions using ethylene glycolbis (beta-aminoethyl) tetraacetic acid (EGTA) charged with Zn(2+) as precipitant, whereas protein A, carrying only one attached histidine tail, did not precipitate. However, all of the engineered proteins could be purified on immobilized metal affinity chromatography (IMAC) columns loaded with Zn(2+). The potential of using the same histidine tails for site-specific immobilization of proteins was also investigated. The enzymes were all catalytically active when immobilized on IMAC gels. For instance, immobilized lactate dehydrogenase, carrying tails composed of four histidine residues, displaced 83% of the soluble enzyme activity. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
A T7 promoter-based His6-tagging vector has been constructed that directs the synthesis in Escherichia coli of fusion proteins containing a stretch of six histidine residues at the N terminus. The vector allows overproduction and single-step purification of His6-fusion protein by immobilized metal (Ni2+) chelate affinity chromatography. The gene encoding leucyl-tRNA synthetase (leuS) was cloned into this vector and expressed in high level. The specific activity of the synthetase in the crude extract of E. coli JM109(DE3) transformant containing the His6-tagging vector with the gene leuS was approximately 110 times that of JM109(DE3) (the host strain without the vector). The overproduced His6-fusion leucyl-tRNA synthetase can be purified to homogeneity under native conditions within 2 h by one-step affinity chromatography with an overall yield of 55%. The His6-tag at the N terminus of leucyl-tRNA synthetase did not affect its aminoacylation activity or the secondary structure.  相似文献   

13.
A novel thermostable chimeric beta-galactosidase was constructed by fusing a poly-His tag to the N-terminal region of the beta-galactosidase from Thermus sp. strain T2 to facilitate its overexpression in Escherichia coli and its purification by immobilized metal-ion affinity chromatography (IMAC). The poly-His tag fusion did not affect the activation, kinetic parameters, and stability of the beta-galactosidase. Copper-iminodiacetic acid (Cu-IDA) supports enabled the most rapid adsorption of the His-tagged enzyme, favoring multisubunit interactions, but caused deleterious effects on the enzyme stability. To improve the enzyme purification a selective one-point adsorption was achieved by designing tailor-made low-activated Co-IDA or Ni-IDA supports. The new enzyme was not only useful for industrial purposes but also has become an excellent model to study the purification of large multimeric proteins via selective adsorption on tailor-made IMAC supports.  相似文献   

14.
化学合成的人α降钙素基因相关肽(CCRP)基因用PCR法改造后使其能正确融合在酵母分泌型表达载体pVT102U/α中的α交配因子前导肽序列之后,然后进行克隆并转化酵母宿主菌S-78进行表达.培养物的上清用酶标(ELlSA)鉴定为阳性,而对照S-78、pVT102u/α为阴性,表达量用ELISA定量大于2mg/L。表达产物经阳离子交按层析(CM—Sphadex C25)和HPLC纯化得到了HPLC纯产品。纯化后的CGRP能引起小鼠血压的降低,说明表达的目的蛋白既有CGRP的免疫结合活性,又有CGRP的生理活性。测定其N-端10个氨基酸序列,证明人工合成的CGRP基因在酵母细胞中已正确表达。  相似文献   

15.
To design an anti-gonadotropin-releasing hormone (GnRH) vaccine capable of eliciting strong immunogenicity, a gene fragment encoding a chimeric peptide was constructed using polymerase chain reaction and ligated into a novel expression vector for recombinant expression in a T7 RNA polymerase-based expression system. The chimeric peptide called GnRH3-hinge-MVP contained three linear repeats of GnRH (GnRH3), a fragment of the human IgG1 hinge region, and a T-cell epitope of measles virus protein (MVP). The expression plasmid contained the GnRH3-hinge-MVP construct ligated to its fusion partner (AnsB-C) via an unique acid labile Asp-Pro linker. The recombinant fusion protein was expressed in an inclusion body in Escherichia coli under IPTG or lactose induction and the target peptide was easily purified using washing of urea and ethanol precipitation. The target chimeric peptide was isolated from the fusion partner following acid hydrolysis and purified using DEAE-Sephacel chromatography. The purified GnRH3-hinge-MVP was determined to be highly homogeneous by IEF analysis and the N-terminal sequencing. Further, immunization of female mice with the recombinant chimeric peptide resulted in generation of high-titer antibodies specific for GnRH. The results showed that GnRH3-hinge-MVP could be considered as a candidate anti-GnRH vaccine.  相似文献   

16.
hK1-L-Fc融合蛋白在CHO细胞中的表达及其活性研究   总被引:1,自引:0,他引:1  
为进一步改造重组人激肽释放酶1(hK1),以期提高其生物活性,制备了通过柔性接头相连接的重组人激肽释放酶1-L-IgG1 Fc融合蛋白(hK1-L-Fc)。采用重叠延伸PCR技术构建hK1-L-Fc融合基因,克隆至表达载体pcDNA3.1,在中国仓鼠卵巢细胞(CHO-S)中表达。利用Protein A 亲和层析柱纯化融合蛋白,SDS-PAGE、Western blotting、飞行时间质谱(MALDI-TOF-MS)、HPLC检测表达产物,底物法检测融合蛋白的体外活性。结果显示:成功构建pcDNA3.1-hK1-L-Fc重组表达载体;获得稳定表达融合蛋白的细胞株;无血清悬浮批式培养的表达量在0.7 mg/L以上;纯化的蛋白其纯度在95%以上,分子量约60 kDa;活性检测显示其比活性在9.2 U/mg以上,较hK1-Fc蛋白提高了18%以上。  相似文献   

17.
Random oligonucleotide fragments were designed and amplified by PCR and fused with the activating domain of pGAD424 to construct a random peptide library. The DNA fragment encoding beta-lactamase was fused with the binding domain of pGBT9(+2). Subsequently, using yeast two-hybrid system we found two positive clones encoding peptides P1 and P2 that have the ability to bind beta-lactamase in vivo. The genes encoding P1 and P2 were cloned into pGEX-4T-1. GST-peptide fusion proteins were expressed in Escherichia coli and isolated by glutathione-Sepharose 4B affinity chromatography. Finally, P1 and P2 were cleaved from the fusion protein with thrombin and purified by ultrafiltration. Inhibition assay of peptides with beta-lactamase in vitro indicated that only P1 has the ability to inhibit beta-lactamase.  相似文献   

18.
MutS as a mismatch binding protein is a promising tool for SNP detection. Green fluorescent protein (GFP) is known as an excellent reporter domain. We constructed chimeric proteins consisting of MutS from Thermus thermophilus and GFPuv from Aequorea victoria by cloning the GFPuv gene into the plasmid vectors carrying the mutS gene. The GFPuv domain fused to the N-terminus of MutS (histag-GFP-MutS) exhibited the same level of green fluorescence as free GFPuv. To obtain the fluorescing histag-GFP-MutS protein the expression at 30 degrees C was required, while free GFPuv fluoresces when expressed both at 30 and 37 degrees C. The chimeric protein where the GFPuv domain was fused to the C-terminus of MutS exhibited much weaker green fluorescence (20-25% compared with those of histag-GFP-MutS or free GFPuv). The insertion of (ProGly)5 peptide linker between the MutS and GFP domains resulted in no significant improvement in GFP fluorescence. No shifts in the excitation and emission spectra have been observed for the GFP domain in the fusion proteins. The fusion proteins with GFP at the N- and C-terminus of MutS recognised DNA mismatches similarly like T. thermophilus MutS. The fluorescent proteins recognising DNA mismatches could be useful for SNP scanning or intracellular DNA analysis. The fusion proteins around 125 kDa were efficiently expressed in E. coli and purified in milligram amounts using metal chellate affinity chromatography.  相似文献   

19.
Anti-neuroexcitation peptide (ANEP) is a novel recombinant peptide obtained from the venom of the Chinese scorpion Buthus martensii Karsch. However, the expression of recombinant ANEP in Escherichia coli results in the formation of insoluble aggregates known as inclusion bodies. Here, we describe a novel method for the preparation of ANEP which maximizes the yields of recombinant peptide in a soluble and active form. A non-fusion expression plasmid pNJUTRX-1-ANEP-His(6) encoding recombinant ANEP with a His(6)-tag at its C-terminus was constructed and transformed into E. coli strain BL21 (DE3). The expressed ANEP was almost in soluble form and accounted for about 12% of the total cellular proteins. The recombinant ANEP in the cell lysate was purified to homogeneity by His Bind affinity chromatography. This effective method solved the problem of a lack of sufficient active peptide which, until now, has hampered the further research and development. In order to develop an immunoassay method for ANEP, polyclonal rabbit antiserum was raised against the prepared ANEP and purified by protein A affinity chromatography. It was confirmed that the antibody reacted with recombinant ANEP by both Western blotting and ELISA results. Using purified antibody, the immunoassay method was developed.  相似文献   

20.
We report the purification, molecular cloning, and characterization of a 40-kDa glycerophosphodiester phosphodiesterase homolog from Borrelia hermsii. The 40-kDa protein was solubilized from whole organisms with 0.1% Triton X-100, phase partitioned into the Triton X-114 detergent phase, and purified by fast-performance liquid chromatography (FPLC). The gene encoding the 40-kDa protein was cloned from a B. hermsii chromosomal DNA lambda EXlox expression library and identified by using affinity antibodies generated against the purified native protein. The deduced amino acid sequence included a 20-amino-acid signal peptide encoding a putative leader peptidase II cleavage site, indicating that the 40-kDa protein was a lipoprotein. Based on significant homology (31 to 52% identity) of the 40-kDa protein to glycerophosphodiester phosphodiesterases of Escherichia coli (GlpQ), Bacillus subtilis (GlpQ), and Haemophilus influenzae (Hpd; protein D), we have designated this B. hermsii 40-kDa lipoprotein a glycerophosphodiester phosphodiesterase (Gpd) homolog, the first B. hermsii lipoprotein to have a putative functional assignment. A nonlipidated form of the Gpd homolog was overproduced as a fusion protein in E. coli BL21(DE3)(pLysE) and was used to immunize rabbits to generate specific antiserum. Immunoblot analysis with anti-Gpd serum recognized recombinant H. influenzae protein D, and conversely, antiserum to H. influenzae protein D recognized recombinant B. hermsii Gpd (rGpd), indicating antigenic conservation between these proteins. Antiserum to rGpd also identified native Gpd as a constituent of purified outer membrane vesicles prepared from B. hermsii. Screening of other pathogenic spirochetes with anti-rGpd serum revealed the presence of antigenically related proteins in Borrelia burgdorferi, Treponema pallidum, and Leptospira kirschneri. Further sequence analysis both upstream and downstream of the Gpd homolog showed additional homologs of glycerol metabolism, including a glycerol-3-phosphate transporter (GlpT), a glycerol-3-phosphate dehydrogenase (GlpD), and a thioredoxin reductase (TrxB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号