首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The essential splicing factor U2AF (U2 auxiliary factor) is a heterodimer composed of 65-kDa (U2AF(65)) and 35-kDa (U2AF(35)) subunits. U2AF(35) has multiple functions in pre-mRNA splicing. First, U2AF(35) has been shown to function by directly interacting with the AG at the 3' splice site. Second, U2AF(35) is thought to play a role in the recruitment of U2AF(65) by serine-arginine-rich (SR) proteins in enhancer-dependent splicing. It has been proposed that the physical interaction between the arginine-serine-rich (RS) domain of U2AF(35) and SR proteins is important for this activity. However, other data suggest that this may not be the case. Here, we report the identification of a mammalian gene that encodes a 26-kDa protein bearing strong sequence similarity to U2AF(35), designated U2AF(26). The N-terminal 187 amino acids of U2AF(35) and U2AF(26) are nearly identical. However, the C-terminal domain of U2AF(26) lacks many characteristics of the U2AF(35) RS domain and, therefore, might be incapable of interacting with SR proteins. We show that U2AF(26) can associate with U2AF(65) and can functionally substitute for U2AF(35) in both constitutive and enhancer-dependent splicing, demonstrating that the RS domain of the small U2AF subunit is not required for splicing enhancer function. Finally, we show that U2AF(26) functions by enhancing the binding of U2AF(65) to weak 3' splice sites. These studies identify U2AF(26) as a mammalian splicing factor and demonstrate that distinct U2AF complexes can participate in pre-mRNA splicing. Based on its sequence and functional similarity to U2AF(35), U2AF(26) may play a role in regulating alternative splicing.  相似文献   

2.
3.
Highlights? Splicing factor SF1 phosphorylation on a conserved SPSP motif is required in vivo ? SPSP phosphorylation (P) induces local folding within an SF1/U2AF65 interface ? Phosphorylation promotes an acutely bent (P)SF1/U2AF65/RNA conformation  相似文献   

4.
U2核糖核蛋白小体辅助因子(U2AF)65是参与前体mRNA剪接的重要辅助因子,前体RNA生成之初,U1核糖核蛋白小体(snRNP)结合到内含子的5'剪接位点,U2AF65和U2AF35分别结合到多聚嘧啶序列和3'剪接位点,剪接因子1(SF1)结合到分支位点是剪接体形成的第一步。U2AF的存在又辅助U2snRNP代替SF1结合到分支位点,使剪接反应顺利进行。最近几年,发现基因组中存在一些U2AF65的旁系同源基因序列。这些旁系同源基因由祖先基因经连续复制而横向形成,复制出的基因副本经历了各自的进化途径,最终它们在结构和功能上有相似之处,又各有独特之处。我们简要讨论了U2AF65、PUF60、CAPERα和CAPERβ这4种同源蛋白的发现过程、结构特征、自身的多样性、基因的进化和生物学功能。  相似文献   

5.
Jenkins JL  Laird KM  Kielkopf CL 《Biochemistry》2012,51(26):5223-5225
U2AF(65) is essential for pre-mRNA splicing in most eukaryotes. Two consecutive RNA recognition motifs (RRM) of U2AF(65) recognize a polypyrimidine tract at the 3' splice site. Here, we use small-angle X-ray scattering to demonstrate that the tandem U2AF(65) RRMs exhibit a broad range of conformations in the solution ensemble. The majority of U2AF(65) conformations exhibit few contacts between the RRMs, such as observed in the crystal structure. A subpopulation adopts tight inter-RRM contacts, such as independently reported based on paramagnetic relaxation enhancements. These complementary structural methods demonstrate that diverse splice sites have the opportunity to select compact or extended inter-RRM proximities from the U2AF(65) conformational pool.  相似文献   

6.
7.
8.
目的:研究U2AF65蛋白的表达水平对基因UBQLN1可变剪接的影响。方法:应用pSR-GFP/Neo载体构建2个U2AF65-siRNA干扰载体,转染293T细胞,通过Western印迹、QRT-PCR检测干扰效果,RT-PCR验证基因UBQLN1的可变剪接。结果:利用设计的U2AF65-siRNA能够干扰细胞中U2AF65的表达;RT-PCR结果显示U2AF65表达水平的下降促使UBQLN1第8外显子的跳跃增加。结论:U2AF65可以通过表达水平的变化参与调控基因UBQLN1的可变剪接。  相似文献   

9.
SifA is a Salmonella effector that is translocated into infected cells by the pathogenicity island 2-encoded type 3 secretion system. SifA is a critical virulence factor. Previous studies demonstrated that, upon translocation, SifA binds the pleckstrin homology motif of the eukaryotic host protein SKIP. In turn, the SifA-SKIP complex regulates the mobilization of the molecular motor kinesin-1 on the bacterial vacuole. SifA exhibits multiple domains containing functional motifs. Here we performed a molecular dissection and a mutational study of SifA to evaluate the relative contribution of the different domains to SifA functions. Biochemical and crystallographic analysis confirmed that the N-terminal domain of SifA is sufficient to interact with the pleckstrin homology domain of SKIP, forming a 1:1 complex with a micromolar dissociation constant. Mutation of the tryptophan residue in the WXXXE motif, which has been proposed to mimic active form of GTPase, deeply affected the stability and the translocation of SifA while mutations of the glutamic residue had no functional impact. A SifA L130D mutant that does not bind SKIP showed a ΔsifA-like phenotype both in infected cells and in the mouse model of infection. We concluded that the WXXXE motif is essential for maintaining the tertiary structure of SifA, the functions of which require the interaction with the eukaryotic protein SKIP.  相似文献   

10.
The cell envelope of Mycobacterium tuberculosis contains glycans and lipids of peculiar structure that play prominent roles in the biology and pathogenesis of tuberculosis. Consequently, the chemical structure and biosynthesis of the cell wall have been intensively investigated in order to identify novel drug targets. Here, we validate that the function of phosphatidyl-myo-inositol mannosyltransferase PimA is vital for M. tuberculosis in vitro and in vivo. PimA initiates the biosynthesis of phosphatidyl-myo-inositol mannosides by transferring a mannosyl residue from GDP-Man to phosphatidyl-myo-inositol on the cytoplasmic side of the plasma membrane. To prove the essential nature of pimA in M. tuberculosis, we constructed a pimA conditional mutant by using the TetR-Pip off system and showed that downregulation of PimA expression causes bactericidality in batch cultures. Consistent with the biochemical reaction catalyzed by PimA, this phenotype was associated with markedly reduced levels of phosphatidyl-myo-inositol dimannosides, essential structural components of the mycobacterial cell envelope. In addition, the requirement of PimA for viability was clearly demonstrated during macrophage infection and in two different mouse models of infection, where a dramatic decrease in viable counts was observed upon silencing of the gene. Notably, depletion of PimA resulted in complete clearance of the mouse lungs during both the acute and chronic phases of infection. Altogether, the experimental data highlight the importance of the phosphatidyl-myo-inositol mannoside biosynthetic pathway for M. tuberculosis and confirm that PimA is a novel target for future drug discovery programs.  相似文献   

11.
We have analyzed the interaction between the U2AF subunits U2AF35 and U2AF65 in vivo using fluorescence resonance energy transfer (FRET) microscopy. U2 snRNP Auxiliary Factor (U2AF) is an essential pre-mRNA splicing factor complex, comprising 35-kDa (U2AF35) and 65-kDa (U2AF65) subunits. U2AF65 interacts directly with the polypyrimidine tract and promotes binding of U2 snRNP to the pre-mRNA branchpoint, while U2AF35 associates with the conserved AG dinucleotide at the 3' end of the intron and has multiple functions in the splicing process. Using two different approaches for measuring FRET, we have identified and spatially localized sites of direct interaction between U2AF35 and U2AF65 in vivo in live cell nuclei. While U2AF is thought to function as a heterodimeric complex, the FRET data have also revealed a novel U2AF35 self-interaction in vivo, which is confirmed in vitro using biochemical assays. These results suggest that the stoichiometry of the U2AF complex may, at least in part, differ in vivo from the expected heterodimeric complex. The data show that FRET studies offer a valuable approach for probing interactions between pre-mRNA splicing factors in vivo.  相似文献   

12.
13.
Wound healing is a complex process that relies on proper levels of cytokines and growth factors to successfully repair the tissue. Of particular interest are the members of the transforming growth factor family. There are three TGF-ß isoforms–TGF- ß 1, 2, and 3, each isoform showing a unique expression pattern, suggesting that they each play a distinct function during development and repair. Previous studies reported an exclusive role for TGF-ß 3 in orofacial development and a potent anti-scarring effect. However, the role of TGF- ß 3 in excisional wound healing and keratinocyte migration remains poorly understood. We tested the effect of TGF-ß 3 levels on excisional cutaneous wounds in the adult mouse by directly injecting recombinant TGF-ß 3 or neutralizing antibody against TGF-ß 3 (NAB) in the wounds. Our results demonstrate that TGF-ß 3 does not promote epithelialization. However, TGF-ß 3 is necessary for wound closure as wounds injected with neutralizing antibody against TGF-ß 3 showed increased epidermal volume and proliferation in conjunction with a delay in keratinocyte migration. Wild type keratinocytes treated with NAB and Tgfb3-deficient keratinocytes closed an in vitro scratch wound with no delay, suggesting that our in vivo observations likely result from a paracrine effect.  相似文献   

14.
Spliceosome assembly is a dynamic process involving the sequential recruitment and rearrangement of small nuclear ribonucleoproteins (snRNPs) on a pre-mRNA substrate. Here we identify several spliceosome protein interactions with different domains of human splicing factor SPF30 that have the potential to mediate the addition of the tri-snRNP to the prespliceosome. In particular, we show that the C-terminal tails of SmD1, SmD3, and the protein Lsm4 interact with the central Tudor domain of SPF30. We identify a novel interaction between the N-terminal domain of SPF30 and U2AF35, a prespliceosome protein that has a role in recognizing the 3' splice site and recruiting U2 snRNP. We also show that the C terminus of SPF30 interacts with a middle domain of hPrp3, a component of U4/U6 di-snRNP and the tri-snRNP. Importantly, we show that the U2AF35 and hPrp3 interactions with SPF30 can occur simultaneously, thereby potentially linking 3' splice site recognition with tri-snRNP addition. Finally, we note that SPF30 and its partner-interacting domains are not conserved in yeast, suggesting this interaction network may play an important role in the complex splicing observed in higher eukaryotes.  相似文献   

15.
The role of U2AF35 and U2AF65 in enhancer-dependent splicing.   总被引:5,自引:1,他引:5       下载免费PDF全文
Splicing enhancers are RNA sequence elements that promote the splicing of nearby introns. The mechanism by which these elements act is still unclear. Some experiments support a model in which serine-arginine (SR)-rich proteins function as splicing activators by binding to enhancers and recruiting the splicing factor U2AF to an adjacent weak 3' splice site. In this model, recruitment requires interactions between the SR proteins and the 35-kDa subunit of U2AF (U2AF35). However, more recent experiments have not supported the U2AF recruitment model. Here we provide additional evidence for the recruitment model. First, we confirm that base substitutions that convert weak 3' splice sites to a consensus sequence, and therefore increase U2AF binding, relieve the requirement for a splicing activator. Second, we confirm that splicing activators are required for the formation of early spliceosomal complexes on substrates containing weak 3' splice sites. Most importantly, we find that splicing activators promote the binding of both U2AF65 and U2AF35 to weak 3' splice sites under splicing conditions. Finally, we show that U2AF35 is required for maximum levels of activator-dependent splicing. We conclude that a critical function of splicing activators is to recruit U2AF to the weak 3' splice sites of enhancer-dependent introns, and that efficient enhancer-dependent splicing requires U2AF35.  相似文献   

16.
Fas/CD95 is a key regulator of apoptotic signaling, which is crucial for the maintenance of homeostasis in peripheral lymphoid organs. TDAG51 has been shown to play critical roles in the up-regulation of Fas gene expression and T-cell apoptosis in vitro. In order to identify the role of TDAG51 in vivo, we generated TDAG51-deficient (TDAG51-/-) mice. Northern blotting revealed no expression of TDAG51 in TDAG51-/- mice, indicating that the TDAG51 gene was successfully targeted. TDAG51-/- mice were healthy and showed no gross developmental abnormalities. While Fas-deficient mice display marked lymphadenopathy, splenomegaly, and lymphocytosis, TDAG51-/- mice had no apparent defects in secondary lymphoid organs. Although TDAG51 is required for up-regulation of Fas expression in T-cell hybridomas, TDAG51-/- mice expressed normal levels of Fas and had normal T-cell apoptosis. Therefore, we conclude that TDAG51 is not essential for Fas up-regulation and T-cell apoptosis in vivo. There are several known homologs of TDAG51, and these homologs may substitute for TDAG51 in TDAG51-/- mice.  相似文献   

17.
《Cell Stem Cell》2014,14(6):864-872
  1. Download : Download high-res image (267KB)
  2. Download : Download full-size image
  相似文献   

18.
The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α. Gcn2 is activated in amino acid-deprived cells by binding of uncharged tRNA to the regulatory domain related to histidyl-tRNA synthetase, but the molecular mechanism of activation is unclear. We used a genetic approach to identify a key regulatory surface in Gcn2 that is proximal to the predicted active site of the HisRS domain and likely remodeled by tRNA binding. Mutations leading to amino acid substitutions on this surface were identified that activate Gcn2 at low levels of tRNA binding (Gcd- phenotype), while other substitutions block kinase activation (Gcn- phenotype), in some cases without altering tRNA binding by Gcn2 in vitro. Remarkably, the Gcn- substitutions increase affinity of the HisRS domain for the C-terminal domain (CTD), previously implicated as a kinase autoinhibitory segment, in a manner dampened by HisRS domain Gcd- substitutions and by amino acid starvation in vivo. Moreover, tRNA specifically antagonizes HisRS/CTD association in vitro. These findings support a model wherein HisRS-CTD interaction facilitates the autoinhibitory function of the CTD in nonstarvation conditions, with tRNA binding eliciting kinase activation by weakening HisRS-CTD association with attendant disruption of the autoinhibitory KD-CTD interaction.  相似文献   

19.
20.
Miniature chromosome maintenance 7 (MCM7) is an essential component of DNA replication licensing complex. Recent studies indicate that MCM7 is amplified and overexpressed in a variety of human malignancies. In this report, we show that MCM7 binds SF3B3. The binding motif is located in the N terminus (amino acids 221–248) of MCM7. Knockdown of MCM7 or SF3B3 significantly increased unspliced RNA of epidermal growth factor receptor, platelet-derived growth factor receptor, and c-Met. A dramatic drop of reporter gene expression of the oxytocin exon 1-intron-exon 2-EGFP construct was also identified in SF3B3 and MCM7 knockdown PC3 and DU145 cells. The MCM7 or SF3B3 depleted cell extract failed to splice reporter RNA in in vitro RNA splicing analyses. Knockdown of SF3B3 and MCM7 leads to an increase of cell death of both PC3 and DU145 cells. Such cell death induction is partially rescued by expressing spliced c-Met. To our knowledge, this is the first report suggesting that MCM7 is a critical RNA splicing factor, thus giving significant new insight into the oncogenic activity of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号