首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Babesia bovis is an economically important hemoprotozoon parasite o f cattle that is prevalent in many, tropical and subtropical regions o f the world. Effective vaccines against this tick-transmitted parasite consist o f live organisms attenuated by passage through splenectomized calves. However, the nature o f acquired resistance to challenge infection with heterologous isolates of this parasite has not been clearly defined. Unsuccessful attempts to select protective antigens have relied upon the use of antibodies to identify immunodominant proteins. In this review, Wendy Brown and Allison Rice-Ficht discuss the limitations of this approach and the rationale behind using helper T cells to select potential vaccine antigens.  相似文献   

2.
Apical membrane antigen-1 (AMA-1) is a target of antibodies that inhibit invasion of Plasmodium falciparum into human erythrocytes and is a candidate for inclusion in a malaria vaccine. We have identified a line of P. falciparum (W2mef) less susceptible to anti-AMA1 antibodies raised to the protein from a heterologous parasite line (3D7). We have constructed transgenic P. falciparum expressing heterologous AMA-1 alleles. In vitro invasion assays show that these transgenic parasites differ from parental lines in susceptibility to inhibitory antibodies, providing direct evidence that sequence polymorphisms within AMA-1 are responsible for evasion of immune responses that inhibit parasite invasion. We also generated a parasite line that would express a chimeric AMA-1 protein, in which highly polymorphic residues within domain 1 were exchanged. Inhibition assays suggest that these residues are not sufficient for inhibition by invasion-blocking antibodies. This study is the first to use P. falciparum allelic exchange to examine the relationship between genetic diversity and susceptibility to protective antibodies. The findings have important implications for the development of an AMA-1-based malaria vaccine.  相似文献   

3.
Experiments were carried out to determine the effect of partial host immunity against the rodent malaria parasite Plasmodium chabaudi on the transmission success of the parasite. There was a fourfold reduction in both the blood-stage, asexually replicating parasite density and the gametocyte (transmissable stage) density in immunized hosts. Some of the reduction in asexual parasite densities was due to strain-specific immunity, but there was no evidence that strain-specific immunity affected gametocyte densities. However, immunity did affect transmission in a strain-specific manner, with a fivefold reduction in gametocyte infectivity to mosquitoes in homologous challenges compared with heterologous challenges or non-immunized controls. This implies the existence of a mechanism of strain-specific infectivity-reducing immunity that does not affect the density of gametocytes circulating in peripheral blood. The proportion of asexual parasites that produced gametocytes increased during the course of infection in both non-immunized and in immunized hosts, but immunity increased gametocyte production early in the infection.  相似文献   

4.
Interactions between antigen-presenting dendritic cells (DCs) and T cells are essential for the induction of an immune response. However, during malaria infection, DC function is compromised and immune responses against parasite and heterologous antigens are reduced. Here, we demonstrate that malaria infection or the parasite pigment hemozoin inhibits T cell and DC interactions both in vitro and in vivo, while signal 1 intensity remains unaltered. This altered cellular behaviour is associated with the suppression of DC costimulatory activity and functional T cell responses, potentially explaining why immunity is reduced during malaria infection.  相似文献   

5.
Reciprocal cross-stadia experimental infections were used to demonstrate stadium specificity within the gregarine assemblage parasitizing Tenebrio molitor, the yellow mealworm. Gregarina cuneata, Gregarina polymorpha, and Gregarina steini are characteristic parasites of larval T. molitor. Gregarina niphandrodes is a characteristic parasite of adult T. molitor. Experimental infections were produced in all homologous host-parasite combinations. No infection was produced in heterologous or cross-stadia combinations. This study introduces the concept of separate, distinct parasite niches corresponding to separate life cycle stages and established by known, predictable life cycle events within a single host species.  相似文献   

6.
7.
Genetically-modified mutants are now indispensable Plasmodium gene-function reagents, which are also being pursued as genetically attenuated parasite vaccines. Currently, the generation of transgenic malaria-parasites requires the use of drug-resistance markers. Here we present the development of an FRT/FLP-recombinase system that enables the generation of transgenic parasites free of resistance genes. We demonstrate in the human malaria parasite, P. falciparum, the complete and efficient removal of the introduced resistance gene. We targeted two neighbouring genes, p52 and p36, using a construct that has a selectable marker cassette flanked by FRT-sequences. This permitted the subsequent removal of the selectable marker cassette by transient transfection of a plasmid that expressed a 37°C thermostable and enhanced FLP-recombinase. This method of removing heterologous DNA sequences from the genome opens up new possibilities in Plasmodium research to sequentially target multiple genes and for using genetically-modified parasites as live, attenuated malaria vaccines.  相似文献   

8.
青蒿素是从中药青蒿中分离出来的一种倍半萜内酯类化合物,也是目前最有效的抗疟疾药物,对人类健康意义重大。该文通过对青蒿素生物合成途径及其相关酶的介绍,综述了利用异源生物通过组合生物合成途径生产青蒿素及其前体的最新研究进展。  相似文献   

9.

Background

The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.

Methods

Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.

Results

Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.

Conclusions

Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.  相似文献   

10.
A variety of recombinant protein expression systems have been developed for heterologous genes in both prokaryotic and eukaryotic systems such as bacteria, yeast, mammals, insects, transgenic animals, and plants. Recently Leishmania tarentolae, a trypanosomatid protozoan parasite of the white-spotted wall gecko (Tarentola annularis), has been suggested as candidate for heterologous genes expression. Trypanosomatidae are rich in glycoproteins, which can account for more than 10% of total protein; the oligosaccharide structures are similar to those of mammals with N-linked galactose, and fucose residues. To date several heterologous proteins have been expressed in L. tarentolae including both cytoplasmic enzymes and membrane receptors. Significant advances in the development of new strains and vectors, improved techniques, and the commercial availability of those tools coupled with a better understanding of the biology of Leishmania species will lead to value and power in commercial and research labs alike.  相似文献   

11.
Sequences related to those near chromosome telomeres in the human malaria parasite, Plasmodium falciparum, were extremely unstable during a genetic cross between two different clonal genotypes. Many progeny of the heterologous cross displayed telomere-homologous restriction fragments found in neither parent. A significant number of the new fragments resulted from rearrangements at chromosome-internal locations which were bounded by more complex tracts of DNA sequence. The same instability was not seen to arise during an inbreeding cross, nor during mitotic replication of parasites. Thus, a form of genetic hypervariability results from molecular events which occur during meiotic reduction and is apparent only in a cross between heterologous strains of parasite. Since other sequences were entirely stable under the same conditions, it appears that chromosome-internal blocks of telomeric sequences in the P. falciparum genome may designate conditionally unstable chromosomal domains. We discuss some potential implications of these findings for the population biology of P. falciparum.  相似文献   

12.
Craig P.S. and Rickard M.D. 1981. Studies on the specific immunodiagnosis of larval cestode infections of cattle and sheep using antigens purified by affinity chromatography in an enzyme-linked immunosorbent assay (ELISA). International Journal for Parasitology11: 441–449. Crude somatic or cyst fluid extracts prepared from Taenia saginata, T. hydatigena or Echinococcus granulosus were partially purified by absorption against homologous and heterologous bovine or ovine antisera on immunoabsorbent affinity columns. Antigens in parasite extracts which were eluted after binding to the homologous anti-parasite antisera (bovine or ovine) coupled to CNBr-activated Sepharose were then passed sequentially through affinity columns containing heterologous anti-parasite Ig and the ‘run-through’ antigens collected. The level of cross reactions to these absorbed antigens, in an enzyme-linked immunosorbent assay (ELISA) using sera from cattle or sheep given heterologous parasite infections (including Fasciola hepatica), were significantly decreased. Absolute specificity was not achieved, and some loss in sensitivity occurred. The absorption of cross-reactive antigen(s) using affinity Chromatographie techniques may be a useful first step in the production of species-specific immunodiagnostic antigens for larval cestode infections.  相似文献   

13.
Glutathione-S-transferase (GST) has been detected in the adult female Setaria cervi, a bovine filarial parasite. The role of S. cervi GST antigen in inducing immunity in the host against Brugia malayi microfilariae and infective larvae was studied by in vitro antibody dependent cell mediated reaction as well as in situ inoculation of filarial parasites within a microchamber in Mastomys. The immune sera from glutathione-S-transferase immunized Mastomys promoted the adherence of peritoneal exudate cells to B. malayi microfilariae and infective larvae in vitro inducing 80.7 and 77.6% cytotoxicity, respectively in 72 h. In the microchambers implanted in the immunized Mastomys host cells could migrate and adhere to the microfilariae and infective larvae and induced 77.8 and 75% cytotoxicity to B. malayi microfilariae and infective larvae in 72 h, respectively. These results suggest that native GST from S. cervi is effective in inducing protection against heterologous B. malayi filarial parasite and thus has potential in immunoprophylaxis.  相似文献   

14.
Following infection with Plasmodium falciparum malaria, children in endemic areas develop antibodies specific to antigens on the parasite-infected red cell surface of the infecting isolate, antibodies associated with protection against subsequent infection with that isolate. In some circumstances induction of antibodies to heterologous parasite isolates also occurs and this has been suggested as evidence for cross-reactivity of responses against the erythrocyte surface. The role of these relatively cross-reactive antibodies in protection from clinical malaria is currently unknown. We studied the incidence of clinical malaria amongst children living on the coast of Kenya through one high transmission season. By categorising individuals according to their pre-season parasite status and antibody response to the surface of erythrocytes infected with four parasite isolates we were able to identify a group of children, those who failed to make a concomitant antibody response in the presence of an asymptomatic parasitaemia, at increased susceptibility to clinical malaria in the subsequent 6 months. The fact that this susceptible group was identified regardless of the parasite isolate tested infers a cross-reactive or conserved target is present on the surface of infected erythrocytes. Identification of this target will significantly aid understanding of naturally acquired immunity to clinical malaria amongst children in endemic areas.  相似文献   

15.
Plasmodium falciparum infection induces alterations in the transport properties of infected erythrocytes that have recently been defined using electrophysiological techniques. Mechanisms responsible for transport of substrates into intraerythrocytic parasites have also been clarified by studies of three substrate-specific (hexose, nucleoside and aquaglyceroporin) parasite plasma membrane transporters. These have been characterised functionally using the Xenopus laevis oocyte heterologous expression system. The same expression system is currently being used to define the function of parasite 'P' type ATPases responsible for intraparasitic [Ca(2+)] homeostasis. We review studies on these transport processes and examine their potential as novel drug targets.  相似文献   

16.
Trapping parasite secretory proteins in baker's yeast   总被引:1,自引:0,他引:1  
Because the function of signal sequences has been conserved during evolution it has been possible to develop both bioinformatics resources to identify them and techniques to clone genes that encode secretory proteins. The latter entail insertion of heterologous signals upstream of signal peptide deleted reporter genes. We discuss the advantages of using Saccharomyces cerevisiae for signal sequence trap technology. The yeast protein-translocation system appears to be less discriminating than that of higher eukaryotes - for example, a Theileria parva cysteine protease gene containing a recessed, nonclassical signal allows access to the secretory pathway--and yeast technology could have general application in studying elements of parasite protein trafficking.  相似文献   

17.
Irradiated cercariae, irradiated schistosomula, or heterologous infections were used to vaccinate sheep against Schistosoma mattheei infection. In the first experiment four doses of 10(4) S. mattheei cercariae irradiated at 6Kr were administered to sheep by percutaneous infection at 4 week intervals. This induced a 74% reduction in a challenge infection compared to control sheep while only 13% protection was achieved in a third group of sheep immunised with normal cercariae of the heterologous parasite S. mansoni. No significant differences were seen in histopathology of the liver of any of the sheep but the pathological changes were more severe in the large and small intestines of sheep vaccinated with the heterologous parasite. In the second experiment with irradiated cercariae only one or two immunising exposures were used. The degree of protection in the adult worm load (9-11%) was not significant and no significant differences were noticed in the pathology of the vaccinated and control animals. In the third experiment four doses of irradiated organisms were used to vaccinate five groups of sheep: 3Kr or 6Kr cercariae were administered by percutaneous infection; 6Kr skin-transformed schistosomula were administered by intra muscular injection; the same 6Kr skin-transformed schistosomula were given by intravenous injection and 6Kr syringe transformed schistosomula were administered by intramuscular injection. The degree of protection (determined as the reduction in worm burden) achieved by these different procedures was respectively 72%, 61%, 77%, 56% and 78%. These results indicate the possibility of making a live vaccine against ovine schistosomiasis and show that effective immunisation is not dependent on the presence of a mature worm infection or on cercarial penetration of the skin by the immunising infection.  相似文献   

18.
The original observation of Sibinovic that soluble parasite antigens (SPA) of B. canis could be used to protect dogs against challenge infection formed the starting point for the development of an effective vaccine. With the advent of in vitro cultivation techniques for haemoprotozoan parasites an important tool became available for the commercial production of the vaccine antigens. A first generation vaccine was developed for dogs, but it appeared that the level of protection induced was not complete. In contrast to what was found with the SPA from serum/plasma of infected animals, protection induced with SPA from a single Babesia canis strain protected against a homologous challenge infection only. Further research led to the discovery that a combination of SPA of B. canis and SPA of B. rossi induced a broad spectrum of immunity. This improved vaccine, Nobivac Piro, not only induces protection against heterologous B. canis infection, but also against heterologous B. rossi infection.  相似文献   

19.
A promising strategy for the development of a malaria vaccine involves the use of attenuated whole parasites, as these present a greater repertoire of antigens to the immune system than subunit vaccines. The complexity of the malaria parasite's life cycle offers multiple stages on which to base an attenuated whole organism vaccine. An important consideration in the design and employment of such vaccines is the diversity of the parasites that are infective to humans. The most valuable vaccine would be one that was effective against multiple species/strains of malaria parasite. Here we compare the species specificity of pre-erythrocytic and erythrocytic whole organism vaccination using live parasites with anti-malarial drug attenuation. The cross-stage protection afforded by each vaccination strategy, and the possibility that immunity against one stage may be abrogated by exposure to other stages of both homologous and heterologous parasites was also assessed. The rodent malaria parasites Plasmodium yoelii yoelii and Plasmodium vinckei lentum are to address these questions, as they offer the widest possible genetic distance between sub-species of malaria parasites infectious to rodents. It was found that both erythrocytic and pre-erythrocytic stage immunity generated by live, attenuated parasite vaccination have species-specific components, with pre-erythrocytic stage immunity offering a much broader pan-species protection. We show that the protection achieved following sporozoite inoculation with concurrent mefloquine treatment is almost entirely dependent of CD8(+) T-cells. Evidence is presented for cross-stage protection between erythrocytic and pre-erythrocytic stage vaccination. Finally, it is shown that, with these species, an erythrocytic stage infection of either a homologous or heterologous species following immunisation with pre-erythrocytic stages does not abrogate this immunity. This is the first direct comparison of the specificity and efficacy of erythrocytic and pre-erythrocytic stage whole organism vaccination strategies utilising the same parasite species pair.  相似文献   

20.
Development of resistance against current antimalarial drugs necessitates the search for novel drugs that interact with different targets and have distinct mechanisms of action. Malaria parasites depend upon high levels of glucose uptake followed by inefficient metabolic utilization via the glycolytic pathway, and the Plasmodium falciparum hexose transporter PfHT, which mediates uptake of glucose, has thus been recognized as a promising drug target. This transporter is highly divergent from mammalian hexose transporters, and it appears to be a permease that is essential for parasite viability in intra-erythrocytic, mosquito, and liver stages of the parasite life cycle. An assay was developed that is appropriate for high throughput screening against PfHT based upon heterologous expression of PfHT in Leishmania mexicana parasites that are null mutants for their endogenous hexose transporters. Screening of two focused libraries of antimalarial compounds identified two such compounds that are high potency selective inhibitors of PfHT compared to human GLUT1. Additionally, 7 other compounds were identified that are lower potency and lower specificity PfHT inhibitors but might nonetheless serve as starting points for identification of analogs with more selective properties. These results further support the potential of PfHT as a novel drug target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号