首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two methods, phenol-ether and magnetic capture-hybridization (MCH), were developed and compared with regard to their sensitivities and abilities to extract the DNA of the insect baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) from soil and to produce DNA amplifiable by PCR. Laboratory experiments were performed with 0. 25 g of autoclaved soil inoculated with different viral concentrations to optimize both methods of baculovirus DNA extraction and to determine their sensitivities. Both procedures produced amplifiable DNA; however, the MCH method was 100-fold more sensitive than the phenol-ether procedure. The removal of PCR inhibitors from the soil appeared to be complete when MCH was used as the viral DNA isolation method, because undiluted aliquots of the DNA preparations could be amplified by PCR. The phenol-ether procedure probably did not completely remove PCR inhibitors from the soil, since PCR products were observed only when the AgMNPV DNA preparations were diluted 10- or 100-fold. AgMNPV DNA was detected in field-collected soil samples from 15 to 180 days after virus application when the MCH procedure to isolate DNA was coupled with PCR amplification of the polyhedrin region.  相似文献   

2.
Infection with the wild-type baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) results in complete death of Spodoptera frugiperda (Sf) cells. However, infection of Sf cells with AcMNPV carrying a mutation or deletion of the apoptotic suppressor gene p35 allowed the cloning of surviving Sf cells that harbored persistent viral genomes. Persistent infection established with the virus with p35 mutated or deleted was blocked by stable transfection of p35 in the host genome or by insertion of the inhibitor of apoptosis (iap) gene into the viral genome. These artificially established persistently virus-infected cells became resistant to subsequent viral challenge, and some of the cell lines carried large quantities of viral DNA capable of early gene expression. Continuous release of viral progenies was evident in some of the persistently virus-infected cells, and transfection of p35 further stimulated viral activation of the persistent cells, including the reactivation of viruses in those cell lines without original continuous virus release. These results have demonstrated the successful establishment of persistent baculovirus infections under laboratory conditions and that their establishment may provide a novel continuous, nonlytic baculovirus expression system in the future.  相似文献   

3.
The restriction sites of Autographa californica nuclear polyhedrosis virus (AcMNPV) E2 DNA were mapped for the endonucleases SmaI, KpnI, BamHI, SacI, XhoI, and EcoRI. The restriction maps of four other AcMNPV variants, Trichoplusia ni (TnMNPV), and Galleria mellonella (GmMNPV) genomes were determined and compared to the endonuclease cleavage maps of AcMNPV E2 DNA. The viral structural polypeptides of AcMNPV variants S3, E2, S1, M3, and R9 were the same when analyzed by polyacrylamide gel electrophoresis. The major structural polypeptides of GmMNPV and TnMNPV had the same pattern in polyacrylamide gels as did AcMNPV structural polypeptides. GmMNPV and TnMNPV had several minor structural protein differences as compared with AcMNPV. AcMNPV variants, TnMNPV, and GmMNPV were distinct but with very similar genomes and protein structures.  相似文献   

4.
5.
A recombinant Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) expressing the green fluorescence protein (GFP) under the control of the AcMNPV polyhedrin promoter was constructed to study the spatial and temporal regulation of baculovirus infection in a permissive host. Larvae that ingested AcMNPV-GFP showed localized expression of GFP in the midgut epithelial cells, as well as hemocytes, at 24 h postinfection. The presence of fluorescence in these tissues indicated not only that the virus was replicating but also that the very late viral proteins were being synthesized. Secondary infection occurred within the tracheal cells throughout the body cavity, confirming earlier reports, and these foci of infection allowed entry of the virus into other tissues, such as the epidermis and the fat body.  相似文献   

6.
The restriction sites of Rachiplusia ou nuclear polyhedrosis virus (RoMNPV) DNA were mapped for the endonucleases SmaI, KpnI, BamHI, SacI, XhoI, and EcoRI. Of the 60 DNA restriction sites of RoMNPV, 35 mapped in similar positions as compared to the restriction sites of Autographa californica nuclear polyhedrosis virus (AcMNPV) DNA. Two plaque-purified viruses, obtained from randomly picked plaques of a wild-type isolate of RoMNPV, were recombinants of RoMNPV and AcMNPV. The recombinants were shown to have RoMNPV and AcMNPV restriction fragments as well as structural polypeptides from each parental virus. Both recombinant viruses had a major RoMNPV capsid protein but were occluded in the AcMNPV polyhedrin protein.  相似文献   

7.
TN-368 cells were infected simultaneously with the closely related Autographa california (AcMNPV) and Rachiplusia ou (RoMNPV) nuclear polyhedrosis viruses. Progeny viral isolates were plaque purified, and their DNAs were analyzed with restriction endonucleases. Of 100 randomly cloned plaques, 7 were AcMNPV and RoMNPV recombinants, 5 were RoMNPV, and 88 were AcMNPV. The recombinants contained DNA sequences derived from both parental genomes. By comparing the restriction cleavage patterns of parental and recombinant DNAs, the crossover sites were mapped. A single double crossover was detected in each of the seven recombinant genomes. In addition, six of the seven recombinants revealed a crossover site mapping between 78 and 89% of the genome. The structural polypeptides of the seven recombinants and two parental viruses were analyzed by polyacrylamide gel electrophoresis, and their polyhedrins were identified by tryptic peptide mapping. An analysis of the segregation of three enveloped nucleocapsid proteins and of the polyhedrins among the recombinants located the DNA sequences coding for AcMNPV structural polypeptides with molecular weights of 37,000 (a capsid polypeptide), 56,000, and 90,000 and the RoMNPV structural polypeptides with molecular weights of 36,000 (a capsid polypeptide), 56,000, and 91,000. The AcMNPV and RoMNPV polypeptides of molecular weights 37,000 and 36,000, respectively, mapped within 78 to 89% or 1 to 29%, the polypeptides of molecular weights 55,000 and 56,000 mapped within 78 to 29%, and the polypeptides of molecular weights 90,000 and 91,000 mapped within 19 to 56% of the genome. The region of the parental DNAs that codes for polyhedrin was located within 70 to 89% of the genome.  相似文献   

8.
A small RNA virus infectious to Trichoplusia ni larvae (TRV) was observed as a contaminant of several Autographa californica nuclear polyhedrosis virus preparations (AcMNPV). The extent of contamination in various AcMNPV preparations was studied by means of serial enrichment passages through T. ni larvae and enzyme-linked immunosorbent assay (ELISA). TRV could not be detected by ELISA in the original preparation of AcMNPV polyhedra prepared in 1968 even after five enrichment passages. Antibody inactivation offers a possible prophylactic method against TRV but temperature inactivation (55°C) does not. Although TRV reduced larval weight, it had little or no effect on bioassays of AcMNPV to T. ni and Heliothis virescens.  相似文献   

9.
Mutations of seven temperature-sensitive mutants of the baculovirus Autographa californica nuclear polyhedrosis virus (NPV) were mapped with respect to the physical restriction map of the A. californica NPV DNA by marker rescue. DNAs from two distantly related NPVs of the multiply embedded type and two NPVs of the singly embedded type were unable to rescue two A. californica NPV mutants.  相似文献   

10.
Several baculvirusus of nuclear polyhedrosis virus (NPV) have been produced and tested for microbial control of various Lepidoptera spp. To date, there are three registered preparations of NPV that are exempt from the requirement of tolerance by the Environmental Protection Agency (EPA) in the United States (US). The first and only commercially available viral preparation used in agriculture was developed by Sandoz, Inc. under the name of Elcar® for control of Heliothis spp. on cotton. The other two baculovirus preparations were developed and registered by the US Department of Agriculture (USDA) for control of Douglas-fir tussock moth and gypsy moth on forests. Several methods are being used for production of NPV viruses: (1) field collection of diseased larvae, (2) laboratory rearing of insects followed by infection with viral inoculum, (3) tissue culture. and (4) tissue culture and mass rearing larvae. Recent progress in mass production of insect virus points toward the adoption of tissue culture with the whole organism technology for production of a standardized viral product. The practical usefulness of various baculovirus preparations has been demonstrated for protection of forests from defoliation by various lepidopterous species. In agriculture, Elcar® has been successfully marketed and has been very well received for use in integrated pest management on cotton. Recent development also demonstrated that use of adjuvants further increase the efficacy of Elcar® against Heliothis spp. on cotton.  相似文献   

11.
A DNA-binding protein (designated DBP) with an apparent molecular mass of 38 kDa was purified to homogeneity from BmN cells (derived from Bombyx mori) infected with the B. mori nucleopolyhedrovirus (BmNPV). Six peptides obtained after digestion of the isolated protein with Achromobacter protease I were partially or completely sequenced. The determined amino acid sequences indicated that DBP was encoded by an open reading frame (ORF16) located at nucleotides (nt) 16189 to 17139 in the BmNPV genome (GenBank accession no. L33180). This ORF (designated dbp) is a homolog of Autographa californica multicapsid NPV ORF25, whose product has not been identified. BmNPV DBP is predicted to contain 317 amino acids (calculated molecular mass of 36.7 kDa) and to have an isoelectric point of 7.8. DBP showed a tendency to multimerization in the course of purification and was found to bind preferentially to single-stranded DNA. When bound to oligonucleotides, DBP protected them from hydrolysis by phage T4 DNA polymerase-associated 3′→5′ exonuclease. The sizes of the protected fragments indicated that a binding site size for DBP is about 30 nt per protein monomer. DBP, but not BmNPV LEF-3, was capable of unwinding partial DNA duplexes in an in vitro system. This helix-destabilizing ability is consistent with the prediction that DBP functions as a single-stranded DNA binding protein in virus replication.

Nucleopolyhedroviruses (NPVs) have large (80- to 180-kb) circular double-stranded DNA (dsDNA) genomes, which replicate in nuclei of infected cells. Despite the widespread use of NPVs for the expression of foreign genes and their potential for pest control, little is known about the mechanism of their replication and the properties of their replication factors. The most widely studied baculovirus, Autographa californica multicapsid NPV (AcMNPV), has the potential to encode about 150 proteins (3), including factors required for virus DNA replication. The products of nine viral genes (ie-1, ie-2, lef-1, lef-2, lef-3, dnahel, dnapol, p35, and lef-7 or pe-38) are necessary and sufficient for efficient replication of transfected plasmid DNAs containing a putative baculovirus replication origin (16, 22). It is likely that DNA polymerase and DNA helicase, which are encoded by the viral genes dnapol and dnahel, respectively (20, 35), form a core of the virus DNA replication machinery. The roles of other factors are less obvious. Single-stranded DNA binding (SSB) protein function was proposed for the protein LEF-3, which binds specifically single-stranded DNA (ssDNA) (10, 14). However, direct proof for the SSB function of LEF-3 in viral DNA replication is lacking. In addition, SSB function was also suggested for LEF-7 on the basis of its predicted amino acid sequence (22). It was recently demonstrated that LEF-1 forms a complex with LEF-2 and may serve as a DNA primase (9). The function of IE-1, IE-2, and PE-38 may result from their ability to activate in trans expression of other genes required for virus replication. The transactivator IE-1 may also participate in the initiation of DNA replication, due to its ability to bind putative replication origins (7, 13, 17, 33). P35 is an inhibitor of apoptosis and may not be involved directly in DNA replication. Its stimulatory effect in the transient-replication assay may result from inhibition of virus-induced apoptosis in cells transfected with the replication genes. Several genes required for DNA replication (six essential and three stimulatory) were also identified in the genome of Orgyia pseudotsugata NPV (1). Homology of these genes to those required for replication of AcMNPV suggests similar replication mechanisms for the two viruses. The genome organization of the Bombyx mori NPV (BmNPV) closely resembles that of AcMNPV. Nineteen homologs of the AcMNPV late expression factor genes (lef genes) were identified in BmNPV (12). At least three of these, ie-2, lef7, and p35, are not essential for virus DNA replication as demonstrated by deletion analysis (12). Because the daughter DNA molecules synthesized under control of the nine essential viral genes appear to be synthesized as concatemers (16, 22, 31, 32), factors required for maturation of nascent DNA and its further processing are still unknown. Although the nine AcMNPV factors were sufficient for efficient DNA replication in Sf cells, an additional viral gene, designated hcf-1, was essential for replication in TN-368 cells (21), indicating dependence of the transient assay on host cell-specific factors. Few proteins involved in NPV DNA replication have been purified from infected cells and characterized in cell-free systems. Among them are AcMNPV DNA polymerase (28, 37), BmNPV DNA polymerase (27), AcMNPV DNA helicase (19), and AcMNPV LEF-3 (10, 14). Isolation of other replication proteins of NPVs is still anticipated.In this report we describe the purification of a viral DNA-binding protein (designated DBP) from BmNPV-infected cells. DBP binds preferentially to ssDNA and is capable of unwinding duplex DNA. The BmNPV open reading frame (ORF) encoding DBP (dbp gene) is a homolog of AcMNPV ORF25, whose product has not been identified so far.  相似文献   

12.
The baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV), a member of the family Baculoviridae, has been widely applied as a biopesticide for the control of the velvetbean caterpillar, a pest of soybean crop field. Baculoviruses are considered safe and efficient agents for this purpose, because they do not infect vertebrates, being safe for the health of humans and animals, as well as to the environment. The objective of this work was to identify proteins obtained from Lonomia obliqua hemolymph with potential application in the optimization of baculovirus AgMNPV replication in Sf9 insect cell culture. In this work the improvement of the cell culture and viral replication of the AgMNPV baculovirus was observed when Grace medium was supplemented with 10 % (v/v) Fetal Bovine Serum (FBS), 1 % (v/v) hemolymph extract, or 3 % (v/v) of hemolymph fractions or hemolymph sub-fractions obtained by purifying hemolymph through High Performance Liquid Chromatography. Hemolymph presented a positive effect on the synthesis of polyhedra and enhanced baculovirus replication in Spodoptera frugiperda (Sf9) cells (TCID50/mL), and led to Sf9 cell culture improvement. Grace medium supplemented with 10 % (v/v) FBS and 1 % (v/v) hemolymph provided an increase of baculovirus replication, when the cells were infected with multiplicity of infection of 1. In this case, the baculovirus replication was 6,443.91 times greater than that obtained with the control: Grace medium supplemented with 10 % (v/v) FBS. In addition, this work suggests that hemolymph from L. obliqua could have an interesting application in biotechnology, due to an increase in the viability of the cells and virus replication.  相似文献   

13.
A simple and rapid method of DNA extraction from soil was developed and DNA was made suitable for subsequent efficient amplification by the polymerase chain reaction (PCR). Key features of the extraction and purification were cold lysozyme- and SDS-assisted lysis with either freezing-thawing or bead beating, cold phenol extraction of the resulting soil suspension, CsCl and KAc precipitation and, finally, spermine-HCl or glass milk purification of DNA. Crude DNA preparations contained 4–20 μg DNA per g of soil extracted, and at least 50% of this was recovered in the final purified DNA preparations. The resulting DNA was pure enough to be restricted by various enzymes, and was amplifiable at concentrations of up to 20 ng of soil-derived DNA per 50 μl reaction mix.
Amplification of a 683 bp target sequence, pat, was performed with different Taq DNA polymerases. Application of the protocol enabled us to detect target DNA derived from roughly 103 introduced Pseudomonas fluorescens (RP4 :: pat ) cfu per g of soil. The fate of an introduced population in the soil could be followed to this limit with PCR-assisted detection of target DNA. In addition, target DNA was detected in soil 5 months after release, when the introduced organism was no longer detectable on selective agar plates.
The extraction and purification protocol applied to various different soil types resulted in DNA of sufficient purity to permit amplification by PCR.  相似文献   

14.
A baculovirus was isolated from larvae of Condylorrhiza vestigialis (Guenée) (Lepidoptera: Crambidae), a pest of a forest species known as Poplar (family Salicaceae, genus: Populus) with high economic value. Electron microscopy analysis of the occlusion body obtained from diseased larvae showed polyhedra containing multiple nucleocapsids per envelope. This baculovirus was thus named Condylorrhiza vestigialis multiple nucleopolyhedrovirus (CoveMNPV) and characterized by its DNA restriction endonuclease pattern, polyhedral protein, viral protein synthesis, and infectivity in insect cell lines. Restriction endonuclease profiles of viral DNA digested with five restriction enzymes were obtained and the CoveMNPV genome size was estimated to be 81 ± 2.5 kbp. The isolation of the polyhedra (OBs) was done from the crude extract of infected larvae by ultracentrifugation through sucrose gradients. These viral particles were analyzed by denaturing polyacrylamide gel electrophoresis (SDS-PAGE), which showed a strong band with approximately 33 kDa, corresponding to the main protein of the occlusion bodies (polyhedrin). Also, a similar band was observed for CoveMNPV infected Spodoptera frugiperda cells (SF-21 AE) pulse-labeled with [35S] methionine and fractionated by SDS-PAGE. Of the four insect cell lines tested for susceptibility to CoveMNPV infection, the SF-21 AE was the most susceptible with occlusion bodies produced in most of the inoculated cells. This is the first record of an NPV from C. vestigialis.  相似文献   

15.
We use data from the serial passage of co-occluded recombinant Autographa californica nuclear polyhedrosis virus (AcMNPV) to estimate the viral multiplicity of infection of cells within infected insects. Co-occlusion, the incorporation of wild-type and mutant virus genomes in the same occlusion body, has been proposed as a strategy to deliver genetically modified viruses as insecticides in a way that contains their spread in the environment. It may also serve as a means whereby naturally occurring mutant forms of NPVs can be maintained in a stable polymorphism. Here, a recombinant strain of AcMNPV was constructed with a deletion of its polyhedrin gene, rendering it incapable of producing occlusion bodies (i.e., occlusion negative). This was co-occluded with wild-type AcMNPV and used to infect fifth-instar Trichoplusia ni larvae. The fate of both genotypes was monitored over several rounds of insect infection. Levels of the occlusion-negative virus genome declined slowly over successive rounds of infection. We applied these data to a model of NPV population genetics to derive an estimate of 4.3 ± 0.3 viral genomes per occlusion body-producing cell.  相似文献   

16.
Few-polyhedra (FP) mutants of nucleopolyhedroviruses (NPVs) are a well-known phenomenon during serial passage of virus in cell culture. Under these circumstances such mutants produce low yields of occlusion bodies (OBs) and poorly occlude virions, but they are selected for through advantageous rates of budded virus replication. Spontaneous insertion of transposable elements originating from host cell DNA into the viral fp25 gene has been shown to be a common cause of the phenotype. A model of NPV population genetics predicts that mutants with these characteristics might persist within stable polymorphisms in viral populations during serial passage of virus in vivo. However, this hypothesis was previously untested, and FP mutants have not been recovered from field isolates of NPVs. We isolated and characterized an FP mutant that arose during routine passage of Autographa californica multinucleocapsid NPV (AcMNPV) in cell culture and identified a transposable element within the fp25 gene. We tracked the fates of coinfecting wild-type and FP mutant AcMNPV strains through serial passage in fifth-instar Trichoplusia ni larvae. The levels of both strains remained stable during successive rounds of infection. We applied the data obtained to a model of NPV population genetics in order to derive the frequency distribution of the multiplicity of cell infection in infected insects and estimated that 4.3 baculovirus genomes per OB-producing cell would account for this equilibrium.  相似文献   

17.
Gel electrophoresis of deoxyribonucleic acid (DNA) fragments generated by digesting the DNA genomes of nuclear polyhedrosis viruses (NPV) with restriction endonucleases provides DNA fragment patterns that may be used to identify different viruses of this group. Characteristic fragment patterns were obtained for three NPVs, which are important as biological pesticides (Autographa californica NPV, Orgyia pseudotsugata NPV, and Heliothis zea NPV). The DNA fragment patterns of the A. californica NPV genoms did not change with passage through the alternate insect host, Trichoplusia ni. Heterogeneity in one preparation of O. pseudotsugata NPV was observed. The identification procedure is direct and precise. Applications of this procedure include quality control of commercial preparations of viral pesticides and screening for genetic alterations in the viruses.  相似文献   

18.
Gel electrophoresis of deoxyribonucleic acid (DNA) fragments generated by digesting the DNA genomes of nuclear polyhedrosis viruses (NPV) with restriction endonucleases provides DNA fragment patterns that may be used to identify different viruses of this group. Characteristic fragment patterns were obtained for three NPVs, which are important as biological pesticides (Autographa californica NPV, Orgyia pseudotsugata NPV, and Heliothis zea NPV). The DNA fragment patterns of the A. californica NPV genoms did not change with passage through the alternate insect host, Trichoplusia ni. Heterogeneity in one preparation of O. pseudotsugata NPV was observed. The identification procedure is direct and precise. Applications of this procedure include quality control of commercial preparations of viral pesticides and screening for genetic alterations in the viruses.  相似文献   

19.
In Vivo and In Vitro Analysis of Baculovirus ie-2 Mutants   总被引:1,自引:0,他引:1       下载免费PDF全文
Upon transient expression in cell culture, the ie-2 gene of Autographa californica nuclear polyhedrosis virus (AcMNPV) displays three functions: trans activation of viral promoters, direct or indirect stimulation of virus origin-specific DNA replication, and arrest of the cell cycle. The ability of IE2 to trans stimulate DNA replication and coupled late gene expression is observed in a cell line derived from Spodoptera frugiperda but not in a cell line derived from Trichoplusia ni. This finding suggested that IE-2 may exert cell line-specific or host-specific effects. To examine the role of ie-2 in the context of infection and its possible influence on the host range, we constructed recombinants of AcMNPV containing deletions of different functional regions within ie-2 and characterized them in cell lines and larvae of S. frugiperda and T. ni. The ie-2 mutant viruses exhibited delays in viral DNA synthesis, late gene expression, budded virus production, and occlusion body formation in SF-21 cells but not in TN-5B1-4 cells. In TN-5B1-4 cells, the ie-2 mutants produced more budded virus and fewer occlusion bodies but the infection proceeded without delay. Examination of the effects of ie-2 and the respective mutants on immediate-early viral promoters in transient expression assays revealed striking differences in the relative levels of expression and differences in responses to ie-2 and its mutant forms in different cell lines. In T. ni and S. frugiperda larvae, the infectivities of the occluded form of ie-2 mutant viruses by the normal oral route of infection was 100- and 1,000-fold lower, respectively, than that of wild-type AcMNPV. The reduction in oral infectivity was traced to the absence of virions within the occlusion bodies. The infectivity of the budded form of ie-2 mutants by hemocoelic injection was similar to that of wild-type virus in both species. Thus, ie-2 mutants are viable but exhibit cell line-specific effects on temporal regulation of the infection process. Due to its effect on virion occlusion, mutants of IE-2 were essentially noninfectious by the normal route of infection in both species tested. However, since budded viruses exhibited normal infectivity upon hemocoelic injection, we conclude that ie-2 does not affect host range per se. The possibility that IE-2 exerts tissue-specific effects has not been ruled out.  相似文献   

20.
Baculovirus p33 Binds Human p53 and Enhances p53-Mediated Apoptosis   总被引:3,自引:2,他引:1       下载免费PDF全文
In vertebrates, p53 participates in numerous biological processes including cell cycle regulation, apoptosis, differentiation, and oncogenic transformation. When insect SF-21 cells were infected with a recombinant of the baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV) overexpressing human p53, p53 formed a stable complex with the product of the AcMNPV orf92, a novel protein p33. The interaction between p53 and p33 was further confirmed by immunoprecipitation studies. When individually expressed in SF-21 cells, human p53 localized mainly in the nucleus whereas baculovirus p33 displayed diffuse cytoplasmic staining and punctuate nuclear staining. However, coexpression of p33 with p53 resulted in exclusive nuclear localization of p33. In both SF-21 and TN-368 cells, p53 expression induced typical features of apoptosis including nuclear condensation and fragmentation, oligonucleosomal ladder formation, cell surface blebbing, and apoptotic body formation. Coexpression of p53 with a baculovirus inhibitor of apoptosis, p35, OpIAP, or CpIAP, blocked apoptosis, whereas coexpression with p33 enhanced p53-mediated apoptosis approximately twofold. Expression of p53 in SF-21 cells stably expressing OpIAP inhibited cell growth in the presence or absence of p33. Thus, human p53 can influence both insect cell growth and death and baculovirus p33 can modulate the death-inducing effects of p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号