首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP-dependent chromatin remodeling complexes enable rapid rearrangements in chromatin structure in response to developmental cues. The ATPase subunits of remodeling complexes share homology with the helicase motifs of DExx box helicases. Recent single-molecule experiments indicate that, like helicases, many of these complexes use ATP to translocate on DNA. Despite sharing this fundamental property, two key classes of remodeling complexes, the ISWI class and the SWI/SNF class, generate distinct remodeled products. SWI/SNF complexes generate nucleosomes with altered positions, nucleosomes with DNA loops and nucleosomes that are capable of exchanging histone dimers or octamers. In contrast, ISWI complexes generate nucleosomes with altered positions but in standard structures. Here, we draw analogies to monomeric and dimeric helicases and propose that ISWI and SWI/SNF complexes catalyze different outcomes in part because some ISWI complexes function as dimers while SWI/SNF complexes function as monomers.  相似文献   

2.
The multisubunit SWI/SNF and RSC complexes utilize energy derived from ATP hydrolysis to mobilize nucleosomes and render the DNA accessible for various nuclear processes. Here we test the idea that remodeling involves intermediates with mobile DNA bulges or loops within the nucleosome by cross-linking the H2A N- or C-terminal tails together to generate protein "loops" that constrict separation of the DNA from the histone surface. Analyses indicate that this intranucleosomal cross-linking causes little or no change in remodeling-dependent exposure of DNA sequences within the nucleosome to restriction enzymes. However, cross-linking inhibits nucleosome mobilization and blocks complete movement of nucleosomes to extreme end positions on the DNA fragments. These results are consistent with evidence that nucleosome remodeling involves intermediates with DNA loops on the nucleosome surface but indicate that such loops do not freely diffuse about the surface of the histone octamer. We propose a threading model for movement of DNA loops around the perimeter of the nucleosome core.  相似文献   

3.
染色质重塑复合体(chromatin remodeling complexes)通过具有ATPase活性的亚基水解ATP释放能量,通过改变核小体"构象"(包括核小体重定位、核小体滑动和核小体替换等)而改变DNA的"可及性"(accessibility),进而影响特定的生理、生化过程。染色质重塑复合体最早在酵母中发现,生化分析表明其至少含有13个亚基。目前植物染色质重塑复合体的组成还未完全解析,但通过对其酵母同源亚基(染色质重塑因子)的研究可从侧面探究植物染色质重塑复合体的功能。同时,还着重讨论了近年来在植物染色质重塑因子研究上取得的结果,以期为植物染色质重塑的作用机制提供启示。  相似文献   

4.
Nucleosome remodeling has been shown, in many cases, to involve cis displacement of nucleosomes on the DNA. This process seems similar to the long-recognized random diffusion of nucleosomes along DNA, but the remodeling process is unidirectional and ATP dependent. Several years ago, we developed a model for nucleosome migration, based on the diffusion of "twist-defects" within the nucleosomal DNA. This has been modified into a model that incorporates ATP-dependent defect generation, and can account for many observations concerning remodeling. However, certain experimental studies in recent years have cast doubt on the applicability of the twist-diffusion model for remodeling, and seem to favor instead a "reptation" model. We discuss herein these problems and propose a resolution.  相似文献   

5.
The precise placement of nucleosomes has large regulatory effects on gene expression. Recent work suggests that nucleosome placement is regulated in part by the affinity of the underlying DNA sequence for the histone octamer. Nucleosome locations are also regulated by several different ATP-dependent chromatin remodeling enzymes. This raises the question of whether DNA sequence influences the activity of chromatin remodeling enzymes. DNA sequence could most simply regulate nucleosome remodeling through its effect on nucleosome stability. In such a model, unstable nucleosomes would be remodeled faster than stable nucleosomes. It is also possible that certain DNA elements could regulate remodeling by inhibiting the interaction of nucleosomes with the remodeling enzyme. A third possibility is that DNA sequence could regulate the outcome of remodeling by influencing how reaction intermediates collapse into a particular set of stable nucleosomal positions. Here we dissect the contribution from these potential mechanisms to the activities of yeast RSC and human ACF, which are representative members of two major classes of remodeling complexes. We find that varying the histone-DNA affinity over 3 orders of magnitude has negligible effects on the rates of nucleosome remodeling and ATP hydrolysis by these two enzymes. This suggests that the rate-limiting step for nucleosome remodeling may not involve the disruption of histone-DNA contacts. We further find that a specific curved DNA element previously hypothesized to inhibit ACF activity does not inhibit substrate binding or remodeling by ACF. The element, however, does influence the distribution of nucleosome positions generated by ACF. Our data support a model in which remodeling enzymes move nucleosomes to new locations by a general sequence-independent mechanism. However, consequent to the rate-limiting remodeling step, the local DNA sequence promotes a collapse of remodeling intermediates into highly resolved positions that are dictated by thermodynamic differences between adjacent positions.  相似文献   

6.
Reactive oxygen species generate some 20,000 base lesions per human cell per day. The vast majority of these potentially mutagenic or cytotoxic lesions are subject to base excision repair (BER). Although chromatin remodelers have been shown to enhance the excision of oxidized bases from nucleosomes in vitro, it is not clear that they are recruited to and act at sites of BER in vivo. To test the hypothesis that cells possess factors that enhance BER in chromatin, we assessed the capacity of nuclear extracts from human cells to excise thymine glycol (Tg) lesions from exogenously added, model nucleosomes. The DNA glycosylase NTHL1 in these extracts was able to excise Tg from both naked DNA and sites in nucleosomes that earlier studies had shown to be sterically accessible. However, the same extracts were able to excise lesions from sterically-occluded sites in nucleosomes only after the addition of Mg2+/ATP. Gel mobility shift assays indicated that nucleosomes remain largely intact following the Mg2+/ATP −dependent excision reaction. Size exclusion chromatography indicated that the NTHL1-stimulating activity has a relatively low molecular weight, close to that of NTHL1 and other BER glycosylases; column fractions that contained the very large chromatin remodeling complexes did not exhibit this same stimulatory activity. These results indicate that cells possess a factor(s) that promotes the initiation of BER in chromatin, but differs from most known chromatin remodeling complexes.  相似文献   

7.
8.
9.
Chromatin remodeling enzymes use energy derived from ATP hydrolysis to mobilize nucleosomes and alter their structure to facilitate DNA access. The Remodels the Structure of Chromatin (RSC) complex has been extensively studied, yet aspects of how this complex functionally interacts with nucleosomes remain unclear. We introduce a steric mapping approach to determine how RSC activity depends on interaction with specific surfaces within the nucleosome. We find that blocking SHL + 4.5/–4.5 via streptavidin binding to the H2A N-terminal tail domains results in inhibition of RSC nucleosome mobilization. However, restriction enzyme assays indicate that remodeling-dependent exposure of an internal DNA site near the nucleosome dyad is not affected. In contrast, occlusion of both protein faces of the nucleosome by streptavidin attachment near the acidic patch completely blocks both remodeling-dependent nucleosome mobilization and internal DNA site exposure. However, we observed partial inhibition when only one protein surface is occluded, consistent with abrogation of one of two productive RSC binding orientations. Our results indicate that nucleosome mobilization requires RSC access to the trailing but not the leading protein surface, and reveals a mechanism by which RSC and related complexes may drive unidirectional movement of nucleosomes to regulate cis-acting DNA sequences in vivo.  相似文献   

10.
11.
Nucleosomes inhibit DNA repair in vitro, suggesting that chromatin remodeling activities might be required for efficient repair in vivo. To investigate how structural and dynamic properties of nucleosomes affect damage recognition and processing, we investigated repair of UV lesions by photolyase on a nucleosome positioned at one end of a 226-bp-long DNA fragment. Repair was slow in the nucleosome but efficient outside. No disruption or movement of the nucleosome was observed after UV irradiation and during repair. However, incubation with the nucleosome remodeling complex SWI/SNF and ATP altered the conformation of nucleosomal DNA as judged by UV photo-footprinting and promoted more homogeneous repair. Incubation with yISW2 and ATP moved the nucleosome to a more central position, thereby altering the repair pattern. This is the first demonstration that two different chromatin remodeling complexes can act on UV-damaged nucleosomes and modulate repair. Similar activities might relieve the inhibitory effect of nucleosomes on DNA repair processes in living cells.  相似文献   

12.
Packaging of the DNA in nucleosomes restricts its accessibility to regulatory factors and enzymatic complexes, making a local remodeling of the nucleosome structure a prerequisite to the establishment of protein-DNA interactions. The use of an experimental system in which one nucleosome is reconstituted on a short linear DNA fragment allows gel fractionation of nucleosomes according to their translational positions, whose locations are dependent on the underlying DNA sequence. Nucleosome mobilization by chromatin remodeling factors is easily detected by observing band disappearance in gel, which in turn provides evidence for histone octamer displacement. Here, we provide methods for chromatin assembly that we have been using in our analysis for nucleosome mobilization by chromatin remodeling factors. These methods are straightforward and easy to follow. Thus, they may provide a good starting assay system for analysis of nucleosome movements by other chromatin remodeling machines.  相似文献   

13.
ATP-dependent nucleosome remodeling complexes can be grouped into several classes that may differ in their biochemical remodeling activities and biological roles. Although there are a number of biochemical studies of each class of remodeler, there are very little data directly comparing the biochemical activities of remodelers from different classes. We have purified two ATP-hydrolyzing proteins, SNF2H and BRG1, which are members of complexes from two different classes of remodelers. Consistent with previous reports, these two homogeneous proteins can perform remodeling functions. We show significant functional differences between SNF2H and BRG1 in vitro; although both SNF2H and BRG1 hydrolyze ATP and remodel linear arrays of nucleosomes, only BRG1 can remodel mononucleosomes. Also, only BRG1 can alter the topology of nucleosomal plasmids. We propose that these functional differences reflect significant mechanistic differences between the two remodeler classes that will impact their biological roles.  相似文献   

14.
15.
16.
Blossey R  Schiessel H 《The FEBS journal》2011,278(19):3619-3632
With nucleosomes being tightly associated with the majority of eukaryotic DNA, it is essential that mechanisms are in place that can move nucleosomes 'out of the way'. A focus of current research comprises chromatin remodeling complexes, which are ATP-consuming protein complexes that, for example, pull or push nucleosomes along DNA. The precise mechanisms used by those complexes are not yet understood. Hints for possible mechanisms might be found among the various spontaneous fluctuations that nucleosomes show in the absence of remodelers. Thermal fluctuations induce the partial unwrapping of DNA from the nucleosomes and introduce twist or loop defects in the wrapped DNA, leading to nucleosome sliding along DNA. In this minireview, we discuss nucleosome dynamics from two angles. First, we describe the dynamical modes of nucleosomes in the absence of remodelers that are experimentally fairly well characterized and theoretically understood. Then, we discuss remodelers and describe recent insights about the possible schemes that they might use.  相似文献   

17.
ATP-dependent chromatin remodeling has an important role in the regulation of cellular differentiation and development. For the first time, a topological view of one of these complexes has been revealed, by mapping the interactions of the catalytic subunit Isw2 with nucleosomal and extranucleosomal DNA in the complex with all four subunits of ISW2 bound to nucleosomes. Different domains of Isw2 were shown to interact with the nucleosome near the dyad axis, another near the entry site of the nucleosome, and another with extranucleosomal DNA. The conserved DEXD or ATPase domain was found to contact the superhelical location 2 (SHL2) of the nucleosome, providing a direct physical connection of ATP hydrolysis with this region of nucleosomes. The C terminus of Isw2, comprising the SLIDE (SANT-like domain) and HAND domains, was found to be associated with extranucleosomal DNA and the entry site of nucleosomes. It is thus proposed that the C-terminal domains of Isw2 are involved in anchoring the complex to nucleosomes through their interactions with linker DNA and that they facilitate the movement of DNA along the surface of nucleosomes.  相似文献   

18.
Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.  相似文献   

19.
ATP-dependent chromatin remodeling activities function to manipulate chromatin structure during gene regulation. One of the ways in which they do this is by altering the positions of nucleosomes along DNA. Here we provide support for the ability of these complexes to move nucleosomes into positions in which DNA is unraveled from one edge. This is expected to result in the loss of histone-DNA contacts that are important for retention of one H2A/H2B dimer within the nucleosome. Consistent with this we find that several chromatin remodeling complexes are capable of catalyzing the exchange of H2A/H2B dimers between chromatin fragments in an ATP-dependent reaction. This provides eukaryotes with additional means by which they may manipulate chromatin structure.  相似文献   

20.
The ATPase ISWI is a subunit of several distinct nucleosome remodeling complexes that increase the accessibility of DNA in chromatin. We found that the isolated ISWI protein itself was able to carry out nucleosome remodeling, nucleosome rearrangement, and chromatin assembly reactions. The ATPase activity of ISWI was stimulated by nucleosomes but not by free DNA or free histones, indicating that ISWI recognizes a specific structural feature of nucleosomes. Nucleosome remodeling, therefore, does not require a functional interaction between ISWI and the other subunits of ISWI complexes. The role of proteins associated with ISWI may be to regulate the activity of the remodeling engine or to define the physiological context within which a nucleosome remodeling reaction occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号