首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA aptamers that are able to complex free adenine have been isolated by a SELEX (systematic evolution of ligands by exponential enrichment) procedure. The adenine binding site was revealed by sequence alignment for a prevalent cluster of aptamers, and its structure and interactions with adenine were probed by RNase digestion studies, lead cleavage, boundary determination experiments, and truncated sequences studies. A new purine binding motif was functionally and structurally characterized and compared with other RNAs specific to purine or adenylated compounds. The affinity for adenine and the specificity for other related targets were quantified. This work suggests that the adenine binding site is composed of two independent secondary structure elements forming a bipartite binding site that interacts with adenine in a new mode of purine recognition. Such binding is of great interest because the imidazole moiety is not trapped in the binding site, and would easily be available for catalytic activity.  相似文献   

2.
Single stranded DNA aptamers that bind with high affinity and specificity to the oxytetracycline (OTC) were identified by selection from an oligonucleotide library of 10(15) molecules. The binding affinities of four aptamers were in nanomolar range. The aptamers were highly selective in that, lack of -OH group at 5-position in tetracycline and -H group in place of -OH at 6-position in doxycycline determined the specificity of these aptamers to bind OTC. Three aptamers designated as No. 4, 5, and 20 shared strong affinities with K(d)=9.61, 12.08, and 56.84 nM, respectively, as well as selectivity to bind OTC (72-76%). Aptamer No. 4 had strong affinity among all with high selectivity, whereas No. 2 had relatively weak affinity (K(d)=121.1 nM) and moderate selectivity (52%). Our results indicated that the aptamers No. 4, 5, and 20 with variable 40-base oligonucleotides can be good candidates for selectively binding to OTC with high molecular discrimination over its analogs such as tetracycline and doxycycline.  相似文献   

3.
核酸适配体是一类具有特异性分子识别能力的单链DNA或者RNA分子,通过指数富集的配体系统进化技术(SELEX)筛选得到。核酸适配体相比抗体具有热稳定性高、便于化学合成与修饰、免疫原性低等优点,在生物分析、生物医学、生物技术等众多领域引起广泛关注。高质量的核酸适配体是应用的基础,然而目前能够满足实际应用的核酸适配体数量还非常有限。如何获得高亲和力、高特异性、高体内稳定性的核酸适配体是核酸适配体领域的技术瓶颈。本文首先简单介绍了SELEX技术的基本原理和核酸库的设计、筛选过程监控、次级文库制备、测序和候选适配体筛选等关键步骤。接着归纳总结了30多年来核酸适配体筛选技术的6个主要研究方向、研究进展和局限性。这6个主要研究方向分别是提高适配体特异性的筛选方法、提高适配体稳定性(抗核酸酶降解能力)的筛选方法、快速筛选方法、复杂靶标适配体筛选方法、小分子靶标适配体筛选方法、提高适配体亲和力的筛选方法。其中快速筛选技术是长期以来持续关注的研究方向,几乎所有物理分离手段都已用于提高SELEX的筛选效率。最近,高效化学反应与SELEX技术的结合为核酸适配体的快速筛选提供了新的策略。本文随后对适合小分子靶标核酸适配体筛选的3类方法进展和存在的问题进行了重点评述。这3类方法分别是基于靶标固定的筛选技术、基于文库固定的筛选技术(捕获-SELEX,Capture-SELEX)和均相筛选技术(氧化石墨烯-SELEX,GO-SELEX)。基于靶标固定的筛选技术尽管存在空间位阻等众多问题,由于其操作的简单性,目前依然应用广泛。近年来Capture-SELEX应用广泛。结合36种靶标适配体的筛选实验条件(文库设计、正筛靶标浓度、负筛靶标的选择和浓度)和所获得的适配体的亲和力(KD,解离常数,dissociation constant)和特异性,对Capture-SELEX的实验条件与适配体性能的关系进行了讨论。统计数据表明,降低正筛靶标浓度有利于提高适配体的亲和力,但不是必要条件。负筛选是目前提高适配体特异性的主要技术手段,但适配体的特异性还不能满足实际需求。负筛选靶标及其浓度的选择差异很大,而且36种靶标中有20种靶标的适配体筛选没有进行负筛选。如何提高核酸适配体的特异性是目前小分子靶标核酸适配体所面临的难题,急需寻找新的策略。本文还列表归纳了近三年利用GO-SELEX进行的13种小分子靶标的实验条件和所获得的适配体的KD和特异性。统计数据表明,GO-SELEX比Capture-SELEX所需要的筛选轮数少,两种方法所获得的适配体的亲和力多在纳摩尔每升水平。Capture-SELEX相对较低的筛选效率应该主要由于文库的自解离问题。核酸适配体的亲和力评价是候选核酸适配体结构与性能评价的重要组成部分。常用的核酸适配体亲和力评价技术包括基于分离、基于固定、均相体系三大类十多种方法。假阳性和假阴性是各种评价技术都有可能存在的问题。本文以纳米金比色法和等温热滴定技术为例评述技术进展,讨论导致不同亲和力评价技术结果不一致性问题的根本原因。本文最后对核酸适配体筛选技术、亲和力评价技术和技术的标准化的未来发展趋势进行了展望。  相似文献   

4.
Aptamer selection for the detection of Escherichia coli K88   总被引:2,自引:0,他引:2  
In this study, the first group of single-stranded DNA aptamers that are highly specific to enterotoxigenic Escherichia coli (ETEC) K88 was obtained from an enriched oligonucleotide pool by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure, during which the K88 fimbriae protein was used as the target and bovine serum albumin as counter targets. These aptamers were applied successfully in the detection of ETEC K88. They were then grouped under different families based on the similarity of their secondary structure and the homology of their primary sequence. Four sequences from different families were deliberately chosen for further characterization by fluorescence analysis. Having the advantage of high sensitivity, fluorescence photometry was selected as single-stranded DNA quantification method during the SELEX process. Aptamers with the highest specificity and affinity were analyzed to evaluate binding ability with E. coli. Since ETEC K88 is the only type of bacterium that expressed abundant K88 fimbriae, the selected aptamers against the K88 fimbriae protein were able to specifically identify ETEC K88 among other bacteria. This method of detecting ETEC K88 by aptamers can also be applied to bacteria other than ETEC K88.  相似文献   

5.
Aptamers are synthetic, short nucleic acid molecules capable of specific target recognition. Aptamers are selected using a screening method termed Systematic Evolution of Ligands by Exponential enrichment (SELEX). We recently have introduced a variant of SELEX called “Ligand-Guided-Selection” (LIGS) that allows the identification of specific aptamers against known cell-surface proteins. Utilizing LIGS, we introduced three specific aptamers against membrane-bound IgM (mIgM), which is the hallmark of B cells. Out of the three aptamers selected against mIgM, an aptamer termed R1, in particular, was found to be interesting due to its ability to recognize mIgM on target cells and then block anti-IgM antibodies binding their antigen. We systematically truncated parent aptamer R1 to design shorter variants with enhanced affinity. Importantly, herein we show that the specificity of the most optimized variant of R1 aptamer is similar to that of anti-IgM antibody, indicating that the specificity of the ligand utilized in selective elution of the aptamer determines the specificity of the LIGS-generated aptamer. Furthermore, we report that truncated variants of R1 are able to recognize mIgM-positive human B lymphoma BJAB cells at physiological temperature, demonstrating that LIGS-generated aptamers could be re-optimized into higher affinity variants. Collectively, these findings show the significance of LIGS in generating highly specific aptamers with potential applications in biomedicine.  相似文献   

6.
Advances in SELEX and application of aptamers in the central nervous system   总被引:4,自引:0,他引:4  
SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a screening technique that involves the progressive selection of highly specific ligands by repeated rounds of partition and amplification from a large combinatorial nucleic acid library. The products of the selection are called aptamers, which are short single stranded DNA or RNA molecules, binding with high affinity, attributed to their specific three-dimensional shapes, to a large variety of targets, ranging from small molecules to complex mixtures. Various improvement of the original SELEX method described in 1990 have been obtained recently, such as capillary electrophoresis SELEX, Toggle-SELEX, Tailored-SELEX, Photo-SELEX, and others. These new variants greatly shorten time of selection and improve aptamer affinity and specificity. Such aptamers have great potential as detecting and/or diagnostic reagents. Furthermore, some aptamers specifically inhibit biological functions of targeted proteins, and are considered as potent therapeutic lead structures evaluated in preclinical disease models. Recently, one aptamer has been approved by Food and Drug Administration of US for treating age-related macular degeneration. This review presents recent advances in the field of SELEX with special emphasis on applications of aptamers as analytical, diagnostic and therapeutic tools in the central nervous system.  相似文献   

7.
By using the in vitro selection method SELEX against the complex mixture of GLA proteins and utilizing methods to deconvolute the resulting ligands, we were able to successfully generate 2'-ribo purine, 2'-fluoro pyrimidine aptamers to various individual targets in the GLA protein proteome that ranged in concentration from 10 nM to 1.4 microM in plasma. Perhaps not unexpectedly, the majority of the aptamers isolated following SELEX bind the most abundant protein in the mixture, prothrombin (FII), with high affinity. We show that by deselecting the dominant prothrombin aptamer the selection can be redirected. By using this DeSELEX approach, we were able to shift the selection toward other sequences and to less abundant protein targets and obtained an aptamer to Factor IX (FIX). We also demonstrate that by using an RNA library that is focused around a proteome, purified protein targets can then be used to rapidly generate aptamers to the protein targets that are rare in the initial mixture such as Factor VII (FVII) and Factor X (FX). Moreover, for all four proteins targeted (FII, FVII, FIX, and FX), aptamers were identified that could inhibit the individual protein's activitity in coagulation assays. Thus, by applying the concepts of DeSELEX and focused library selection, aptamers specific for any protein in a particular proteome can theoretically be generated, even when the proteins in the mixture are present at very different concentrations.  相似文献   

8.
SELEX stands for systematic evolution of ligands by exponential enrichment. This method, described primarily in 1990 [Ellington, A.D., Szostak, J.W., 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822; Tuerk, C., Gold, L., 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510] aims at the development of aptamers, which are oligonucleotides (RNA or ssDNA) binding to their target with high selectivity and sensitivity because of their three-dimensional shape. Aptamers are all new ligands with a high affinity for considerably differing molecules ranging from large targets as proteins over peptides, complex molecules to drugs and organic small molecules or even metal ions. Aptamers are widely used, including medical and pharmaceutical basic research, drug development, diagnosis, and therapy. Analytical and separation tools bearing aptamers as molecular recognition and binding elements are another big field of application. Moreover, aptamers are used for the investigation of binding phenomena in proteomics. The SELEX method was modified over the years in different ways to become more efficient and less time consuming, to reach higher affinities of the aptamers selected and for automation of the process. This review is focused on the development of aptamers by use of SELEX and gives an overview about technologies, advantages, limitations, and applications of aptamers.  相似文献   

9.
10.
Analytical applications of aptamers   总被引:17,自引:0,他引:17  
So far, several bio-analytical methods have used nucleic acid probes to detect specific sequences in RNA or DNA targets through hybridisation. More recently, specific nucleic acids, aptamers, selected from random sequence pools, have been shown to bind non-nucleic acid targets, such as small molecules or proteins. The development of in vitro selection and amplification techniques has allowed the identification of specific aptamers, which bind to the target molecules with high affinity. Many small organic molecules with molecular weights from 100 to 10,000 Da have been shown to be good targets for selection. Moreover, aptamers can be selected against difficult target haptens, such as toxins or prions. The selected aptamers can bind to their targets with high affinity and even discriminate between closely related targets.

Aptamers can thus be considered as a valid alternative to antibodies or other bio-mimetic receptors, for the development of biosensors and other analytical methods. The production of aptamers is commonly performed by the SELEX (systematic evolution of ligands by exponential enrichment) process, which, starting from large libraries of oligonucleotides, allows the isolation of large amounts of functional nucleic acids by an iterative process of in vitro selection and subsequent amplification through polymerase chain reaction.

Aptamers are suitable for applications based on molecular recognition as analytical, diagnostic and therapeutic tools. In this review, the main analytical methods, which have been developed using aptamers, will be discussed together with an overview on the aptamer selection process.  相似文献   


11.
12.
Ahn JY  Jo M  Dua P  Lee DK  Kim S 《Oligonucleotides》2011,21(2):93-100
RNA and DNA aptamers that bind to target molecules with high specificity and affinity have been a focus of diagnostics and therapeutic research. These aptamers are obtained by SELEX often requiring many rounds of selection and amplification. Recently, we have shown the efficient binding and elution of RNA aptamers against target proteins using a microfluidic chip that incorporates 5 sol-gel binding droplets within which specific target proteins are imbedded. Here, we demonstrate that our microfluidic chip in a SELEX experiment greatly improved selection efficiency of RNA aptamers to TATA-binding protein, reducing the number of selection cycles needed to produce high affinity aptamers by about 80%. Many aptamers were identical or homologous to those isolated previously by conventional filter-binding SELEX. The microfluidic chip SELEX is readily scalable using a sol-gel microarray-based target multiplexing. Additionally, we show that sol-gel embedded protein arrays can be used as a high-throughput assay for quantifying binding affinities of aptamers.  相似文献   

13.
Aptamers that are selected in vitro from random pools of DNA or RNA molecules by SELEX (Systematic evolution of ligands by exponential enrichment) technique have been extensively explored for analytical and biomedical applications. Although many aptamers with high affinity and specificity against specific ligands have been reported, there is still a lack of well characterized DNA aptamers. Here we report the selection of a group of aptamer candidates (85 mer) against streptavidin. Through comparing the predicted secondary structures of all the candidates, a conservative bulge-hairpin structure section (about 29 mer) was found, and then it was determined to be the binding motif to streptavidin. This binding motif was further discovered to also exist in streptavidin-binding aptamers (SBAs) selected by three other laboratories using different methods. The primary sequences of this secondary structure motif are very different, only several nucleotides in the loop and bulge area are critical for binding and other nucleotides are variable. The streptavidin binding of all the SBAs could be competed by biotin implying that they bind to the same site on streptavidin. These results suggest that the evolution of SBA is predominated by specific groups on streptavidin. The highly variable sequence composition of streptavidin-binding aptamer would make the design of aptameric sensor or device based on streptavidin more flexible and easy.  相似文献   

14.
配体指数级富集系统进化(systematic evolution of ligands by exponential enrichment,SELEX)技术是一种组合化学技术,可经过反复筛选扩增得到针对靶分子的高亲和力和高特异性的适配子.适配子通过识别、结合特定靶分子并对其进行功能调控从而达到对疾病诊断和治疗的目的 .近年来SELEX技术在神经系统功能和疾病研究中的应用越来越多.现已经筛选出针对朊蛋白、肌腱蛋白-C、β-淀粉样肽、乙酰胆碱受体的自身抗体等靶标的适配子,促进了对朊病毒病、脑肿瘤、阿茨海默病、重症肌无力等神经系统疾病的诊断和治疗研究,为这些疾病的诊治提供了新的研究工具.  相似文献   

15.
Graham JC  Zarbl H 《PloS one》2012,7(4):e36103

Background

Disease-specific biomarkers are an important tool for the timely and effective management of pathological conditions, including determination of susceptibility, diagnosis, and monitoring efficacy of preventive or therapeutic strategies. Aptamers, comprising single-stranded or double-stranded DNA or RNA, can serve as biomarkers of disease or biological states. Aptamers can bind to specific epitopes on macromolecules by virtue of their three dimensional structures and, much like antibodies, aptamers can be used to target specific epitopes on the basis of their molecular shape. The Systematic Evolution of Ligands by EXponential enrichment (SELEX) is the approach used to select high affinity aptamers for specific macromolecular targets from among the >1013 oligomers comprising typical random oligomer libraries. In the present study, we used live cell-based SELEX to identify DNA aptamers which recognize cell surface differences between HPV-transformed cervical carcinoma cancer cells and isogenic, nontumorigenic, revertant cell lines.

Methodology/Principal Findings

Whole-cell SELEX methodology was adapted for use with adherent cell lines (which we termed Adherent Cell-SELEX (AC-SELEX)). Using this approach, we identified high affinity aptamers (nanomolar range Kd) to epitopes specific to the cell surface of two nontumorigenic, nontumorigenic revertants derived from the human cervical cancer HeLa cell line, and demonstrated the loss of these epitopes in another human papillomavirus transformed cervical cancer cell line (SiHa). We also performed preliminary investigation of the aptamer epitopes and their binding characteristics.

Conclusions/Significance

Using AC-SELEX we have generated several aptamers that have high affinity and specificity to the nontumorigenic, revertant of HPV-transformed cervical cancer cells. These aptamers can be used to identify new biomarkers that are related to carcinogenesis. Panels of aptamers, such as these may be useful in predicting the tumorigenic potential and properties of cancer biopsies and aid in the effective management of pathological conditions (diagnosis, predicted outcome, and treatment options).  相似文献   

16.
筛选环孢霉素A适体的SELEX技术的建立   总被引:2,自引:0,他引:2  
体外合成一个全长78个核苷酸,中间含35个随机序列的随机单链寡核苷酸序列(ssDNA)文库,运用指数富集的配体系统进化(SELEX)技术,以环孢霉素A(CsA)为靶目标,以磁珠作为筛选介质,利用生物素 链酶抗生物素 辣根过氧化物酶系统,检测每轮ssDNA文库与CsA的亲和力,筛选并鉴定CsA特异性的适体.经过11轮的筛选,ssDNA文库与CsA的亲和力呈上升趋势.将第10轮筛选产物克隆测序并运用相关软件进行一级结构和二级结构分析.随机挑选的19个克隆适体,根据一级结构的同源性可分为5个家族,二级结构预测以茎环(发夹)为主,这可能是适体与CsA作用的部位. CsA特异性的适体将用于酶联法、免疫荧光法等对CsA进行检测.  相似文献   

17.
Single-stranded (ss) DNA aptamers with binding affinity to Listeria spp. were selected using a whole-cell SELEX (Systematic Evolution of Ligands by EXponential enrichment) method. Listeria monocytogenes cells were grown at 37 °C and harvested at mid-log phase or early stationary phase to serve as the targets in SELEX. A total of 10 unique aptamer sequences were identified, six associated with log phase cells and four with stationary phase cells. Binding affinity of the aptamers was determined using flow cytometry and ranged from 10% to 44%. Four candidates having high binding affinity were further studied and found to show genus-specific binding affinity when screened against five different species within the Listeria genus. Using sequential binding assays combined with flow cytometry, it was determined that three of the aptamers (LM6-2, LM12-6, and LM12-13) bound to one apparent cell surface moiety, while a fourth aptamer (LM6-116) appeared to bind to a different cell surface region. This is the first study in which SELEX targeted bacterial cells at different growth phases. When used together, aptamers that bind to different cell surface moieties could increase the analytical sensitivity of future capture and detection assays.  相似文献   

18.
In this article, a panel of ssDNA aptamers specific to Staphylococcus aureus was obtained by a whole bacterium-based SELEX procedure and applied to probing S. aureus. After several rounds of selection with S. aureus as the target and Streptococcus and S. epidermidis as counter targets, the highly enriched oligonucleic acid pool was sequenced and then grouped under different families on the basis of the homology of the primary sequence and the similarity of the secondary structure. Eleven sequences from different families were selected for further characterization by confocal imaging and flow cytometry analysis. Results showed that five aptamers demonstrated high specificity and affinity to S. aureus individually. The five aptamers recognize different molecular targets by competitive experiment. Combining these five aptamers had a much better effect than the individual aptamer in the recognition of different S. aureus strains. In addition, the combined aptamers can probe single S. aureus in pyogenic fluids. Our work demonstrates that a set of aptamers specific to one bacterium can be used in combination for the identification of the bacterium instead of a single aptamer.  相似文献   

19.
Twelve rounds of systematic evolution of ligands by exponential enrichment (SELEX) were conducted against a magnetic bead conjugate of the para‐aminophenylpinacolylmethylphosphonate (PAPMP) derivative of the organophosphorus (OP) nerve agent soman (GD). The goal was to develop DNA aptamers that could scavenge GD in vivo, thereby reducing or eliminating the toxic effects of this dangerous compound. Aptamers were sequenced and screened in peroxidase‐based colorimetric plate assays after rounds 8 and 12 of SELEX. The aptamer candidate sequences exhibiting the highest affinity for the GD derivative from round 8 also reappeared in several clones from round 12. Each of the highest affinity PAPMP‐binding aptamers also bound methylphosphonic acid (MPA). In addition, the aptamer with the highest overall affinity for PAPMP carried a sequence motif (TTTAGT) thought to bind MPA based on previously published data (J. Fluoresc 18: 867–876, 2008). This sequence motif was found in several other relatively high affinity PAPMP aptamer candidates as well. In studies with the nerve agent GD, pre‐incubation of a large molar excess of aptamer candidates failed to protect human butyrylcholinesterase (BuChE) from inhibition. With the aid of three‐dimensional molecular modeling of the GD derivative it appears that a hydrophilic cleft sandwiched between the pinacolyl group and the p‐aminophenyl ring might channel nucleotide interactions to the phosphonate portion of the immobilized GD derivative. However, bona fide GD free in solution may be repulsed by the negative phosphate backbone of aptamers and rotate its phosphonate and fluorine moieties away from the aptamer to avoid being bound. Future attempts to develop aptamers to GD might benefit from immobilizing the pinacolyl group of bona fide GD to enhance exposure of the phosphonate and fluorine to the random DNA library. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
目的:用纤维蛋白作为靶物质对ss DNA随机序列文库进行筛选,旨在获得高亲和力的纤维蛋白适配子。方法:在体外人工合成长度为99个核苷酸的ss DNA随机序列文库,文库中间区域为63个核苷酸的随机序列,两端为18个核苷酸的固定的引物序列;然后以羧基磁珠为介质包被纤维蛋白,利用指数级富集的配体系统进化技术(SELEX)对ss DNA随机序列文库进行反复筛选,当结合率不再提高时对筛选出的适配子进行连接、转化及测序分析。结果:羧基磁珠成功地包被了纤维蛋白,包被效率为87.65%,经15轮逐步递增压力的筛选,获得了纤维蛋白适配子群,经测序分析比对发现适配子有很好的多样性。结论:应用SELEX技术初步筛选出了亲和力较高的纤维蛋白适配子群,为下一步的鉴定及功能研究奠定了良好基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号