共查询到20条相似文献,搜索用时 0 毫秒
1.
Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil 总被引:1,自引:0,他引:1
WEIGUO CHENG HIDEMITSU SAKAI ANNE HARTLEY† KAZUYUKI YAGI TOSHIHIRO HASEGAWA 《Global Change Biology》2008,14(3):644-656
To determine how elevated night temperature interacts with carbon dioxide concentration ([CO2]) to affect methane (CH4) emission from rice paddy soil, we conducted a pot experiment using four controlled‐environment chambers and imposed a combination of two [CO2] levels (ambient: 380 ppm; elevated: 680 ppm) and two night temperatures (22 and 32 °C). The day temperature was maintained at 32 °C. Rice (cv. IR72) plants were grown outside until the early‐reproductive growth stage and then transferred to the chambers. After onset of the treatment, day and night CH4 fluxes were measured every week. The CH4 fluxes changed significantly with the growth stage, with the largest fluxes occurring around the heading stage in all treatments. The total CH4 emission during the treatment period was significantly increased by both elevated [CO2] (P=0.03) and elevated night temperature (P<0.01). Elevated [CO2] increased CH4 emission by 3.5% and 32.2% under high and low night temperature conditions, respectively. Elevated [CO2] increased the net dry weight of rice plants by 12.7% and 38.4% under high and low night temperature conditions, respectively. These results imply that increasing night temperature reduces the stimulatory effect of elevated [CO2] on both CH4 emission and rice growth. The CH4 emission during the day was larger than at night even under the high‐night‐temperature treatment (i.e. a constant temperature all day). This difference became larger after the heading stage. We observed significant correlations between the night respiration and daily CH4 flux (P<0.01). These results suggest that net plant photosynthesis contributes greatly to CH4 emission and that increasing night temperature reduces the stimulatory effect of elevated [CO2] on CH4 emission from rice paddy soil. 相似文献
2.
The frost hardiness of 20 to 25-year-old Scots pine (Pinus sylvestris L.) saplings was followed for 2 years in an experiment that attempted to simulate the predicted climatic conditions of the future, i.e. increased atmospheric CO2 concentration and/or elevated air temperature. Frost hardiness was determined by an electrolyte leakage method and visual damage scoring on needles. Elevated temperatures caused needles to harden later and deharden earlier than the controls. In the first year, elevated CO2 enhanced hardening at elevated temperatures, but this effect disappeared the next year. Dehardening was hastened by elevating CO2 in both springs. The frost hardiness was high (40 °C), even at elevated temperatures, in midwinter, at which time the electrolyte leakage method underestimated the frost hardiness compared with the visual scoring. In addition to the significant differences between treatments, there was also significant variation between trees in frost hardiness within treatments. These results suggest that the risks of frost damage are marked in the predicted climatic conditions in Finland, and, more specifically, they depend on how the occurrence of the frost episodes changes with respect to climatic warming during the annual cycle, especially in the autumn and spring. We also conclude that the conditions in midwinter are not critical for frost injury to trees in the future. 相似文献
3.
The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background 总被引:36,自引:5,他引:36
AGPase, ADP glucose pyrophosphorylaseGS, glutamine synthetaseGOGAT, glutamate : oxoglutarate amino transferaseNADP-ICDH, NADP-dependent isocitrate dehydrogenaseNR, nitrate reductaseOPPP, oxidative pentose phosphate pathway3PGA, glycerate-3-phosphatePEPCase, phosphoenolpyruvate carboxylaseRubisco, ribulose-1,5-bisphosphate carboxylase/oxygenaseSPS, sucrose phosphate-synthaseThis review first summarizes the numerous studies that have described the interaction between the nitrogen supply and the response of photosynthesis, metabolism and growth to elevated [CO2]. The initial stimulation of photosynthesis in elevated [CO2] is often followed by a decline of photosynthesis, that is typically accompanied by a decrease of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), an accumulation of carbohydrate especially starch, and a decrease of the nitrogen concentration in the plant. These changes are particularly marked when the nitrogen supply is low, whereas when the nitrogen supply is adequate there is no acclimation of photosynthesis, no major decrease in the internal concentration of nitrogen or the levels of nitrogen metabolites, and growth is stimulated markedly. Second, emerging evidence is discussed that signals derived from nitrate and nitrogen metabolites such as glutamine act to regulate the expression of genes involved in nitrate and ammonium uptake and assimilation, organic acid synthesis and starch accumulation, to modulate the sugar-mediated repression of the expression of genes involved in photosynthesis, and to modulate whole plant events including shoot–root allocation, root architecture and flowering. Third, increased rates of growth in elevated [CO2] will require higher rates of inorganic nitrogen uptake and assimilation. Recent evidence is discussed that an increased supply of sugars can increase the rates of nitrate and ammonium uptake and assimilation, the synthesis of organic acid acceptors, and the synthesis of amino acids. Fourth, interpretation of experiments in elevated [CO2] requires that the nitrogen status of the plants is monitored. The suitability of different criteria to assess the plant nitrogen status is critically discussed. Finally the review returns to experiments with elevated [CO2] and discusses the following topics: is, and if so how, are nitrate and ammonium uptake and metabolism stimulated in elevated [CO2], and does the result depend on the nitrogen supply? Is acclimation of photosynthesis the result of sugar-mediated repression of gene expression, end-product feedback of photosynthesis, nitrogen-induced senescence, or ontogenetic drift? Is the accumulation of starch a passive response to increased carbohydrate formation, or is it triggered by changes in the nutrient status? How do changes in sugar production and inorganic nitrogen assimilation interact in different conditions and at different stages of the life history to determine the response of whole plant growth and allocation to elevated [CO2]? 相似文献
4.
The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration 总被引:16,自引:8,他引:16
Abstract. Herbaceous C3 plants grown in elevated CO2 show increases in carbon assimilation and carbohydrate accumulation (particularly starch) within source leaves. Although changes in the partitioning of biomass between root and shoot occur, the proportion of this extra assimilate made available for sink growth is not known. Root:shoot ratios tend to increase for CO2 -enriched herbaceous plants and decrease for CO2 -enriched trees. Root:shoot ratios for cereals tend to remain constant. In contrast, elevated temperatures decrease carbohydrate accumulation within source and sink regions of a plant and decrease root:shoot ratios. Allometric analysis of at least two species showing changes in root: shoot ratios due to elevated CO2 show no alteration in the whole-plant partitioning of biomass. Little information is available for interactions between temperature and CO2 . Cold-adapted plants show little response to elevated levels of CO2 , with some species showing a decline in biomass accumulation. In general though, increasing temperature will increase sucrose synthesis, transport and utilization for CO2 -enriched plants and decrease carbohydrate accumulation within the leaf. Literature reports are discussed in relation to the hypothesis that sucrose is a major factor in the control of plant carbon partitioning. A model is presented in support. 相似文献
5.
Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO2, temperature,and nitrogen 总被引:2,自引:0,他引:2
Rising atmospheric carbon dioxide, nitrogen deposition and warmer temperatures may alter the quantity and quality of plant-derived organic matter available to soil biota, potentially altering rates of belowground herbivory and decomposition. Our objective was to simulate future growth conditions for an early successional (loblolly) and late successional (ponderosa) species of pine to determine if the physical and chemical properties of the root systems would change. Seedlings were grown for 160 days in greenhouses at the Duke University Phytotron at 35 or 70 Pa CO2 partial pressure, ambient or ambient + 5 °C temperature, and 1 or 5 mMNH4O3. Roots from harvested seedlings were analyzed for changes in surface area, specific root length, mass, total nonstructural carbohydrates (TNC), and concentrations of macro-nutrients. Surface area increased in both species under elevated CO2, due primarily to increases in root length, and this response was greatest (+138%) in loblolly pine at high temperature. Specific root length decreased in loblolly pine at elevated CO2 but increases in mass more than compensated for this, resulting in net increases in total length. TNC was unaffected and nutrient concentrations decreased only slightly at elevated CO2, possibly from anatomical changes to the root tissues. We conclude that future growth conditions will enhance soil exploration by some species of pine, but root carbohydrate levels and nutrient concentrations will not be greatly affected, leaving rates of root herbivory and decomposition unaltered. 相似文献
6.
Interactive effects of elevated carbon dioxide and growth temperature on photosynthesis in cotton leaves 总被引:5,自引:0,他引:5
Cotton (Gossypium hirsutum L., cv DPL 5415) plants were grown in naturally lit environment chambers at day/night temperature regimes of 26/18 (T-26/18), 31/23 (T-31/23) and 36/28 °C (T-36/28) and CO2 concentrations of 350 (C-350), 450 (C-450) and 700 L L-1 (C-700). Net photosynthesis rates, stomatal conductance, transpiration, RuBP carboxylase activity and the foliar contents of starch and sucrose were measured during different growth stages. Net CO2 assimilation rates increased with increasing CO2 and temperature regimes. The enhancement of photosynthesis was from 24 mol CO2 m-2 s-1 (with C-350 and T-26/18) to 41 mol m-2 s-1 (with C-700 and T-36/28). Stomatal conductance decreased with increasing CO2 while it increased up to T-31/23 and then declined. The interactive effects of CO2 and temperature resulted in a 30% decrease in transpiration. Although the leaves grown in elevated CO2 had high starch and sucrose concentrations, their content decreased with increasing temperature. Increasing temperature from T-26/18 to 36/28 increased RuBP carboxylase activity in the order of 121, 172 and 190 mol mg-1 chl h-1 at C-350, C-450 and C-700 respectively. Our data suggest that leaf photosynthesis in cotton benefited more from CO_2 enrichment at warm temperatures than at low growth temperature regimes. 相似文献
7.
Limitations in carbohydrate supplies have been implicated as a factor responsible for reproductive failure under heat stress. Heat stress affects two stages of reproductive development in cowpea [Vigna unguiculata (L.) Walp.], and genotypes are available with tolerance and sensitivity to heat during these different stages. The objectives of this study were to determine the responses of these cowpea lines to ambient and elevated [CO2], under heat stress and optimal temperature, and test whether differences in carbohydrate supplies due to genotypes, CO2 enrichment and heat stress are associated with differences in sensitivity to heat during reproductive development. Plants were grown in reach-in growth chambers and subjected to day/night temperatures of either 33/20 or 33/30°C, and [CO2] levels of either 350 or 700 μmol mol-1. Under intermediate night temperature (33/20°C), all lines set substantial numbers of pods. Under high night temperature (33/30°C) with either ambient or elevated [CO2], one heat-sensitive line produced no flowers and the other set no pods, whereas the heat-tolerant line abundantly set pods. High night temperature reduced the overall carbohydrate content of the plants, especially peduncle sugars, and caused decreases in photosynthetic rates. The high pod set of the heat-tolerant line, under high night temperature, was associated with higher levels of sugars in peduncles compared with the heat-sensitive lines. The heat-tolerant line accumulated substantial shoot biomass, exhibited less accumulation of starch in leaves, and possibly had less down-regulation of photosynthesis in response to CO2 enrichment and heat stress than the heat-sensitive lines. Elevated [CO2] resulted in higher overall carbohydrate levels in heat-sensitive lines (starch in leaves, stems and peduncles), but it did not increase their heat tolerance with respect to flower production or pod set. Heat-induced damage to floral buds and anthers in the sensitive lines was associated with low sugars levels in peduncles, indicating that heat had greater effects on assimilate demand than on leaf assimilate supply. The heat-tolerant line was the most responsive genotype to elevated [CO2] with respect to pod production under either high or intermediate temperatures. 相似文献
8.
Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon dioxide Enrichment 总被引:14,自引:1,他引:14
A. ROGERS D. J. ALLEN P. A. DAVEY P. B. MORGAN E. A. AINSWORTH C. J. BERNACCHI G. CORNIC O. DERMODY F. G. DOHLEMAN E. A. HEATON J. MAHONEY X.-G. ZHU E. H. DELUCIA D. R. ORT & S. P. LONG 《Plant, cell & environment》2004,27(4):449-458
A lower than theoretically expected increase in leaf photosynthesis with long‐term elevation of carbon dioxide concentration ([CO2]) is often attributed to limitations in the capacity of the plant to utilize the additional photosynthate, possibly resulting from restrictions in rooting volume, nitrogen supply or genetic constraints. Field‐grown, nitrogen‐fixing soybean with indeterminate flowering might therefore be expected to escape these limitations. Soybean was grown from emergence to grain maturity in ambient air (372 µmol mol?1[CO2]) and in air enriched with CO2 (552 µmol mol?1[CO2]) using Free‐Air CO2 Enrichment (FACE) technology. The diurnal courses of leaf CO2 uptake (A) and stomatal conductance (gs) for upper canopy leaves were followed throughout development from the appearance of the first true leaf to the completion of seed filling. Across the growing season the daily integrals of leaf photosynthetic CO2 uptake (A′) increased by 24.6% in elevated [CO2] and the average mid‐day gs decreased by 21.9%. The increase in A′ was about half the 44.5% theoretical maximum increase calculated from Rubisco kinetics. There was no evidence that the stimulation of A was affected by time of day, as expected if elevated [CO2] led to a large accumulation of leaf carbohydrates towards the end of the photoperiod. In general, the proportion of assimilated carbon that accumulated in the leaf as non‐structural carbohydrate over the photoperiod was small (< 10%) and independent of [CO2] treatment. By contrast to A′, daily integrals of PSII electron transport measured by modulated chlorophyll fluorescence were not significantly increased by elevated [CO2]. This indicates that A at elevated [CO2] in these field conditions was predominantly ribulose‐1,5‐bisphosphate (RubP) limited rather than Rubisco limited. There was no evidence of any loss of stimulation toward the end of the growing season; the largest stimulation of A′ occurred during late seed filling. The stimulation of photosynthesis was, however, transiently lost for a brief period just before seed fill. At this point, daytime accumulation of foliar carbohydrates was maximal, and the hexose:sucrose ratio in plants grown at elevated [CO2] was significantly larger than that in plants grown at current [CO2]. The results show that even for a crop lacking the constraints that have been considered to limit the responses of C3 plants to rising [CO2] in the long term, the actual increase in A over the growing season is considerably less than the increase predicted from theory. 相似文献
9.
Megan E. Reardon 《Journal of Plant Interactions》2017,12(1):295-303
We studied the effects of temperature, carbon dioxide and abscisic acid on mung bean (Vigna radiata). Plants were grown under 26/22°C or 32/28°C (16?h?light/8?h?dark) at 400 or 700?μmol?mol?1 CO2 and received ABA application of 0 or 100?μl (10?μg) every other day for three weeks, after eight days of initial growth, in growth chambers. We measured 24 parameters. As individual factors, in 16 cases temperature; in 8 cases CO2; in 9 cases ABA; and as interactive factors, in 4 cases, each of temperature?×?CO2, and CO2?×?ABA; and in 2 cases, temperature?×?ABA were significant. Higher temperatures increased growth, aboveground biomass, growth indices, photochemical quenching (qP) and nitrogen balance index (NBI). Elevated CO2 increased growth and aboveground biomass. ABA decreased growth, belowground biomass, qP and flavonoids; increased shoot/root mass ratio, chlorophyll and NBI; and had little role in regulating temperature–CO2 effects.
Abbreviations: AN: net CO2 assimilation; E: transpiration; Fv/Fm: maximum quantum yield of PSII; gs: stomatal conductance; LAR: leaf area ratio; LMA: leaf mass per area; LMR: leaf mass ratio;φPSII: effective quantum yield of PSII; qNP: non-photochemical quenching; qP: photochemical quenching; SRMR: shoot to root mass ratio; WUE: water use efficiency 相似文献
10.
Heinz-Dieter Brannolte Helmut K. Mangold Egon Stahl 《Chemistry and physics of lipids》1983,33(3):297-299
The rate of extraction of triacylglycerols with supercritical carbon dioxide can be greatly enhanced by raising the pressure of the fluid to 600 bar, or higher, and its temperature to 60°C, or higher. Both the amount of carbon dioxide and the time required for complete extraction are reduced at such high pressures and temperatures. 相似文献
11.
Bunce JA 《Annals of botany》2004,93(6):665-669
BACKGROUND AND AIMS: Respiration of autotrophs is an important component of their carbon balance as well as the global carbon dioxide budget. How autotrophic respiration may respond to increasing carbon dioxide concentrations, [CO(2)], in the atmosphere remains uncertain. The existence of short-term responses of respiration rates of plant leaves to [CO(2)] is controversial. Short-term responses of respiration to temperature are not disputed. This work compared responses of dark respiration and two processes dependent on the energy and reductant supplied by dark respiration, translocation and nitrate reduction, to changes in [CO(2)] and temperature. METHODS: Mature soybean leaves were exposed for a single 8-h dark period to one of five combinations of air temperature and [CO(2)], and rates of respiration, translocation and nitrate reduction were determined for each treatment. KEY RESULTS: Low temperature and elevated [CO(2)] reduced rates of respiration, translocation and nitrate reduction, while increased temperature and low [CO(2)] increased rates of all three processes. A given change in the rate of respiration was accompanied by the same change in the rate of translocation or nitrate reduction, regardless of whether the altered respiration was caused by a change in temperature or by a change in [CO(2)]. CONCLUSIONS: These results make it highly unlikely that the observed responses of respiration rate to [CO(2)] were artefacts due to errors in the measurement of carbon dioxide exchange rates in this case, and indicate that elevated [CO(2)] at night can affect translocation and nitrate reduction through its effect on respiration. 相似文献
12.
E. A. KINSMAN C. LEWIS M. S. DAVIES J. E. YOUNG D. FRANCIS I. D. THOMAS K. H. CHORLTON H. J. OUGHAM 《Plant, cell & environment》1996,19(6):775-780
The aim was to establish whether temperature and/or elevated [CO2] (-700 μmol mol?1) affects the cell doubling time (cdt) in the different zones of the shoot apex of two natural populations of Dactylis glomerata originating in Portugal (38° S3′ N) and in Sweden (63° 09′ N). In the Portuguese population at ambient [CO2], only the pith rib meristem (PRM) exhibited a significant shortening of cdts from 10 to 30 °C. Elevated [CO2] resulted in a significant shortening of cdt, particularly in the PRM where cdt was reduced 4-8- and 6-1-fold at 10 and 20 °C, respectively, but only 2-fold at 30 °C. In the Swedish population at ambient [CO2], there were no consistent temperature-dependent alterations to cdt and this population was less responsive to elevated [CO2] than the Portuguese population. Nevertheless, elevated [CO2] resulted in a significant shortening of the cdt for some of the zones; the maximum reduction occurred in the PRM at 30 °C. We concluded that in the shoot apex of the Portuguese population, and most notably in the PRM, 10 and 20 °C were non-optimal temperatures for cell division, whilst the Swedish population was relatively buffered against temperature change. Elevated [CO2] resulted in substantially greater reductions in cdts in the shoot meristem of the Portuguese population than in that of the Swedish population. 相似文献
13.
Wheat plants were cultivated under growth regimes combining two temperatures (ambient and 4°C above ambient temperature) with two concentrations or carbon dioxide (350 and 700 μmol mol) and two nitrogen fertilizer applications (high and low). The aim of this study was to define any changes in the acyl lipid composition of wheat grains which could result from alterations in the growth conditions. Qualitative and quantitative changes were observed in both non-starch and starch lipid fractions. Temperature was by far the most influential growth factor, although interactions between all three growth conditions occurred, as confirmed by analysis of variance. Growth at elevated temperatures had the general effect of reducing the amounts of accumulated lipids, particularly non-polar lipids (1322 nig fatty acids per 100 g fresh weight at ambient temperatures as opposed to 777 mg fatty acids per lOOg fresh weight at 4°C above ambient temperatures). There were changes in the proportions of the major non-starch as well as the starch lipids. In the former category, non-polar lipids (principally triacylglyc-erols), the membrane glycosylglyccridcs and phos-phatidylcholinc were the main constituents, whereas in the starch lipids, lysophosphatidylcholine and lysophos-phatidylethanolamine represented over 70% of the total. Depending on the growth conditions, the percentages of lipids such as monogalactosyldiacylglycerol, digalactosyl-diacylglycerol and phosphatidyleholine (non-starch) or the starch lysophosphatidylethanolamine varied 2-fold or more. Significant changes in the acyl composition of individual lipids were also observed, most often in the proportions of palmitate, oleate and linoleate. The observed alterations in wheat lipids arc likely to affect the properties of any flours derived from grain grown under climate change conditions. 相似文献
14.
Temperate forest responses to carbon dioxide, temperature and nitrogen: a model analysis 总被引:3,自引:1,他引:3
The ITE Edinburgh Forest Model, which describes diurnal and seasonal changes in the pools and fluxes of C, N and water in a fully coupled forest–soil system, was parametrized to simulate a managed conifer plantation in upland Britain. The model was used to examine (i) the transient effects on forest growth of an IS92a scenario of increasing [CO2] and temperature over two future rotations, and (ii) the equilibrium (sustainable) effects of all combinations of increases in [CO2] from 350 to 550 and 750 μmol mol?1, mean annual temperature from 7.5 to 8.5 and 9.5°C and annual inputs of 20 or 40 kg N ha?1. Changes in underlying processes represented in the model were then used to explain the responses. Eight conclusions were supported by the model for this forest type and climate.
- 1 Increasing temperatures above 3°C alone may cause forest decline owing to water stress.
- 2 Elevated [CO2] can protect trees from water stress that they may otherwise suffer in response to increased temperature.
- 3 In N-limiting conditions, elevated [CO2] can increase allocation to roots with little increase in leaf area, whereas in N-rich conditions elevated [CO2] may not increase allocation to roots and generally increases leaf area.
- 4 Elevated [CO2] can decrease water use by forests in N-limited conditions and increase water use in N-rich conditions.
- 5 Elevated [CO2] can increase forest productivity even in N-limiting conditions owing to increased N acquisition and use efficiency.
- 6 Rising temperatures (along with rising [CO2]) may increase or decrease forest productivity depending on the supply of N and changes in water stress.
- 7 Gaseous losses of N from the soil can increase or decrease in response to elevated [CO2] and temperature.
- 8 Projected increases in [CO2] and temperature (IS92a) are likely to increase net ecosystem productivity and hence C sequestration in temperate forests.
15.
16.
Andrew G. Peterson J. Timothy Ball YiqI. Luo Christopher B. Field † Peter B. Reich ‡ Peter S. Curtis § Kevin L. Griffin ¶ Carla A. Gunderson Richard J. Norby David T. Tissue †† Manfred Forstreuter ‡‡ AnA. Rey §§ Christoph S. Vogel¶¶ Cmeal participants 《Global Change Biology》1999,5(3):331-346
Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem, and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO2 but much less at elevated CO2. This study was designed to (i) assess whether the A–N relationship was more similar for species within than between community and vegetation types, and (ii) examine how growth at elevated CO2 affects the A–N relationship. Data were obtained for 39 C3 species grown at ambient CO2 and 10 C3 species grown at ambient and elevated CO2. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO2 did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO2 increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A–N relationship for deciduous trees expressed on a leaf-mass basis was not altered by elevated CO2, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO2 increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO2. Generalizations about the effect of elevated CO2 on the A–N relationship, and differences between pines and deciduous trees will be enhanced as more data become available. 相似文献
17.
Bunce JA 《Photosynthesis research》2001,68(3):237-245
Strawberry (Fragaria × ananassa) plants were grown in field plots at the current ambient [CO2], and at ambient + 300 and ambient + 600 μmol mol−1 [CO2]. Approximately weekly measurements were made of single leaf gas exchange of upper canopy leaves from early spring through
fall of two years, in order to determine the temperature dependence of the stimulation of photosynthesis by elevated [CO2], whether growth at elevated [CO2] resulted in acclimation of photosynthesis, and whether any photosynthetic acclimation was reduced when fruiting created
additional demand for the products of photosynthesis. Stimulation of photosynthetic CO2 assimilation by short-term increases in [CO2] increased strongly with measurement temperature. The stimulation exceeded that predicted from the kinetic characteristics
of ribulose-1,5-bisphosphate carboxylase at all temperatures. Acclimation of photosynthesis to growth at elevated [CO2] was evident from early spring through summer, including the fruiting period in early summer, with lower rates under standard
measurement conditions in plants grown at elevated [CO2]. The degree of acclimation increased with growth [CO2]. However, there were no significant differences between [CO2] treatments in total nitrogen per leaf area, and photosynthetic acclimation was reversed one day after switching the [CO2] treatments. Tests showed that acclimation did not result from a limitation of photosynthesis by triose phosphate utilization
rate at elevated [CO2]. Photosynthetic acclimation was not evident during dry periods in midsummer, when the elevated [CO2] treatments conserved soil water and photosynthesis declined more at ambient than at elevated [CO2]. Acclimation was also not evident during the fall, when plants were vegetative, despite wet conditions and continued higher
leaf starch content at elevated [CO2]. Stomatal conductance responded little to short-term changes in [CO2] except during drought, and changed in parallel with photosynthetic acclimation through the seasons in response to the long-term
[CO2] treatments. The data do not support the hypothesis that source-sink balance controls the seasonal occurrence of photosynthetic
acclimation to elevated [CO2] in this species.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
18.
19.
Genotypic variability was studied in two Mediterranean grass species, Bromus erectus and Dactylis glomerata , with regard to the response to CO2 of leaf total non-structural carbohydrate concentration ([TNC]lf ), specific leaf area (SLA), and leaf carbon and nitrogen concentrations ([C]lf and [N]lf , respectively). Fourteen genotypes of each species were grown together on intact soil monoliths at ambient and elevated CO2 concentrations (350 and 700 μmol mol−1 , respectively). In both species, the most consistent effect of elevated CO2 was an increase in [TNC]lf and a decrease in leaf nitrogen concentration when expressed either as total dry mass [Nm ]lf , structural dry mass [Nm st]lf or leaf area [Na ]lf . The SLA decreased only in D. glomerata , due to an accumulation of total non-structural carbohydrates and to an increase in leaf density. No genotypic variability was found for any variable in B. erectus , suggesting that genotypes responded in a similar way to elevated CO2 . In D. glomerata , a genotypic variability was found only for [Cst], [Nm ]lf , [Nm st]lf and [Na ]lf . Since [Nm ]lf is related to plant growth and is a strong determinant of plant–herbivore interactions, our results suggest evolutionary consequences of elevated CO2 through competitive interactions or herbivory. 相似文献
20.
Bunce JA 《Annals of botany》2005,95(6):1059-1066
BACKGROUND AND AIMS: Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO(2)] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO(2)] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. METHODS: Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO(2)] and at ambient plus 350 micromol mol(-1) [CO(2)] in open top chambers. Measurements were made on pairs of leaves from both [CO(2)] treatments on a total of 16 d during the middle of the growing seasons of two years. KEY RESULTS: Elevated [CO(2)] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m(-2) d(-1) (1.4 micromol m(-2) s(-1)) for both the ambient and elevated [CO(2)] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO(2)], and respiration per unit of mass was significantly lower at elevated [CO(2)]. Respiration increased by a factor of 2.5 between 18 and 26 degrees C average night temperature, for both [CO(2)] treatments. CONCLUSIONS: These results do not support predictions that elevated [CO(2)] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights. 相似文献