首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Key message

Expression of a truncated form of wheat TdSOS1 in Arabidopsis exhibited an improved salt tolerance. This finding provides new hints about this protein that can be considered as a salt tolerance determinant.

Abstract

The SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na+ and K+ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na+/H+ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1?972 and compared them to the Arabidopsis AtSOS1 protein. The Arabidopsis sos1-1 mutant is hypersensitive to both Na+ and Li+ ions. Compared with sos1-1 mutant transformed with the empty binary vector, seeds from TdSOS1 or TdSOS1?972 transgenic plants had better germination under salt stress and more robust seedling growth in agar plates as well as in nutritive solution containing Na+ or Li+ salts. The root elongation of TdSOS1?972 transgenic lines was higher than that of Arabidopsis sos1-1 mutant transformed with TdSOS1 or with the endogenous AtSOS1 gene. Under salt stress, TdSOS1?972 transgenic lines showed greater water retention capacity and retained low Na+ and high K+ in their shoots and roots. Our data showed that the hyperactive form TdSOS1?972 conferred a significant ionic stress tolerance to Arabidopsis plants and suggest that selection of hyperactive alleles of the SOS1 transport protein may pave the way for obtaining salt-tolerant crops.  相似文献   

3.

Key message

We found that Arabidopsis AtADF1 was phosphorylated by AtCDPK6 at serine 6 predominantly and the phosphoregulation plays a key role in the regulation of ADF1-mediated depolymerization of actin filaments.

Abstract

Since actin-depolymerizing factor (ADF) is highly conserved among eukaryotes, it is one of the key modulators for actin organization. In plants, ADF is directly involved in the depolymerization of actin filaments, and therefore important for F-actin-dependent cellular activities. The activity of ADF is tightly controlled through a number of molecular mechanisms, including phosphorylation-mediated inactivation of ADF. To investigate Arabidopsis ADF1 phosphoregulation, we generated AtADF1 phosphorylation site-specific mutants. Using transient expression and stable transgenic approaches, we analyzed the ADF1 phosphorylation mutants in the regulation of actin filament organizations in plant cells. By in vitro phosphorylation assay, we showed that AtADF1 is phosphorylated by AtCDPK6 at serine 6 predominantly. Chemically induced expression of AtCDPK6 can negatively regulate the wild-type AtADF1 in depolymerizing actin filaments, but not those of the mutants AtADF1(S6A) and AtADF1(S6D). These results demonstrate a regulatory function of Arabidopsis CDPK6 in the N-terminal phosphorylation of AtADF1.  相似文献   

4.

Key message

This study indicated that Ca 2+ , ROS and actin filaments were involved with CaM in regulating pollen tube growth and providing a potential way for overcoming pear self-incompatibility.

Abstract

Calmodulin (CaM) has been associated with various physiological and developmental processes in plants, including pollen tube growth. In this study, we showed that CaM regulated the pear pollen tube growth in a concentration-dependent bi-phasic response. Using a whole-cell patch-clamp configuration, we showed that apoplastic CaM induced a hyperpolarization-activated calcium ion (Ca2+) current, and anti-CaM largely inhibited this type of Ca2+ current. Moreover, upon anti-CaM treatment, the reactive oxygen species (ROS) concentration decreased and actin filaments depolymerized in the pollen tube. Interestingly, CaM could partially rescue the inhibition of self-incompatible pear pollen tube growth. This phenotype could be mediated by CaM-enhanced pollen plasma membrane Ca2+ current, tip-localized ROS concentration and stabilized actin filaments. These data indicated that Ca2+, ROS and actin filaments were involved with CaM in regulating pollen tube growth and provide a potential way for overcoming pear self-incompatibility.  相似文献   

5.
The calcineurin B-like (CBL) protein and the CBL-interacting protein kinase (CIPK) signaling pathway play important roles in plant abiotic stress tolerance. To investigate the molecular mechanism of salt stress tolerance of foxtail millet, SiCBL4 and SiCIPK24 were identified and functionally characterized. Both SiCBL4 and SiCIPK24 were induced by salt, abscisic acid (ABA), methyl viologen (MV), and heat shock stress in foxtail millet seedlings. Yeast two-hybrid and bimolecular fluorescence complementation assay showed that SiCBL4 interacted with SiCIPK24. The mutation of the N-myristoylation site of SiCBL4 changed the sub-cellular localization of SiCBL4 and directed the SiCBL4-SiCIPK24 protein complex from plasma membrane to cytoplasm, and disrupted its function in plant salt stress tolerance. Overexpression of SiCBL4 or SiCIPK24 in Arabidopsis sos3-1 or sos2-1 mutant plants rescued the mutant salt hypersensitivity phenotype. In addition, overexpression of SiCIPK24 also enhanced the salt stress tolerance of Arabidopsis wild-type plants. This work helps to understand the structure and function of the foxtail millet CBL and CIPK genes and confirmed that the foxtail millet CBL-CIPK pathway can be manipulated to enhance the plant salt stress tolerance.  相似文献   

6.
The tissue-preferential distributed calcium sensors, SOS3 and SCaBP8, play important roles in SOS pathway to cope with saline conditions. Both SOS3 and SCaBP8 interact with and activate SOS2. However the regulatory mechanism for SOS2 activation and membrane recruitment by SCaBP8 differs from SOS3. SCaBP8 is phosphorylated by SOS2 at plasma membrane (PM) under salt stress. This phosphorylation anchors the SCaBP8-SOS2 complex on plasma membrane and activates PM Na+/H+ anti-porter, such as SOS1. Here, we describe that SOS2 has high binding affinity and catalytic efficiency to SCaBP8, suggesting that phosphorylation of SCaBP8 by SOS2 perhaps occurs rapidly in salt condition. SCaBP8 is also phosphorylated by PKS5 (SOS2-like Protein Kinase5) which negatively regulates PM H+-ATPase activity and functions in plant alkaline tolerance, providing a clue to roles of SCaBP8 in both salt and alkaline tolerance. SOS2 interacts with SOS3 and SCaBP8 with its FISL motif at C-terminus. However, luciferase activity complement assay indicates that SOS2 N-terminal is also essential for interacting with these proteins in plant.Key words: calcium signal, kinase activity, luciferase complementDue to their sessile nature, plants have developed elaborate strategies to deal with a number of environmental challenges. One overwhelming constraint is high salinity in the soil, which inhibits plant growth and decreases the agricultural productivity. Efflux and/or sequestering of sodium ion to apoplastic space/vacuolar are well-known cellular mechanisms that plants protect them from saline stress.1 Recently identified SOS (salt overly sensitive) pathway plays critical roles in maintaining ion homeostasis in response to high salinity.2 Two calcium sensors, SOS3 and SCaBP8 (SOS3-like calcium binding protein8), perceive cytosolic calcium signature triggered by salt, interact with and activate a Thr/Ser protein kinase, SOS2 and recruit it to the plasma membrane. Then, the formed SOS3-SOS2 or SCaBP8-SOS2 complex activates a PM Na+/H+ anti-porter, SOS1.24 Moreover, SOS2 also regulates vascular Na+/H+ antiporter activity.5 Previously, we reported that SCaBP8 and SOS3 function distinctly in activation of SOS2.3 For instance, N-terminal myristoylation of SOS3 plays an important role in salt tolerance.6 However, there is no consensus myristoylated motif in SCaBP8. Instead, an N-terminal hydrophobic domain is sufficient to facilitate the association of SCaBP8 to plasma membrane.3 In addition, SCaBP8 is phosphorylated by SOS2 under salt stress and this phosphorylation stabilizes the interaction of SOS2 and SCaBP8.4 In this report, we describe that SCaBP8 possibly is rapidly phosphorylated by SOS2 under salt stress and also phosphorylated by another stress responsible protein kinase, implying additional roles of SCaBP8 in stress responses.  相似文献   

7.
Quan R  Lin H  Mendoza I  Zhang Y  Cao W  Yang Y  Shang M  Chen S  Pardo JM  Guo Y 《The Plant cell》2007,19(4):1415-1431
The SOS (for Salt Overly Sensitive) pathway plays essential roles in conferring salt tolerance in Arabidopsis thaliana. Under salt stress, the calcium sensor SOS3 activates the kinase SOS2 that positively regulates SOS1, a plasma membrane sodium/proton antiporter. We show that SOS3 acts primarily in roots under salt stress. By contrast, the SOS3 homolog SOS3-LIKE CALCIUM BINDING PROTEIN8 (SCABP8)/CALCINEURIN B-LIKE10 functions mainly in the shoot response to salt toxicity. While root growth is reduced in sos3 mutants in the presence of NaCl, the salt sensitivity of scabp8 is more prominent in shoot tissues. SCABP8 is further shown to bind calcium, interact with SOS2 both in vitro and in vivo, recruit SOS2 to the plasma membrane, enhance SOS2 activity in a calcium-dependent manner, and activate SOS1 in yeast. In addition, sos3 scabp8 and sos2 scabp8 display a phenotype similar to sos2, which is more sensitive to salt than either sos3 or scabp8 alone. Overexpression of SCABP8 in sos3 partially rescues the sos3 salt-sensitive phenotype. However, overexpression of SOS3 fails to complement scabp8. These results suggest that SCABP8 and SOS3 are only partially redundant in their function, and each plays additional and unique roles in the plant salt stress response.  相似文献   

8.
The salt overly sensitive (SOS) pathway is critical for plant salt stress tolerance and has a key role in regulating ion transport under salt stress. To further investigate salt tolerance factors regulated by the SOS pathway, we expressed an N-terminal fusion of the improved tandem affinity purification tag to SOS2 (NTAP-SOS2) in sos2-2 mutant plants. Expression of NTAP-SOS2 rescued the salt tolerance defect of sos2-2 plants, indicating that the fusion protein was functional in vivo. Tandem affinity purification of NTAP-SOS2-containing protein complexes and subsequent liquid chromatography-tandem mass spectrometry analysis indicated that subunits A, B, C, E, and G of the peripheral cytoplasmic domain of the vacuolar H+-ATPase (V-ATPase) were present in a SOS2-containing protein complex. Parallel purification of samples from control and salt-stressed NTAP-SOS2/sos2-2 plants demonstrated that each of these V-ATPase subunits was more abundant in NTAP-SOS2 complexes isolated from salt-stressed plants, suggesting that the interaction may be enhanced by salt stress. Yeast two-hybrid analysis showed that SOS2 interacted directly with V-ATPase regulatory subunits B1 and B2. The importance of the SOS2 interaction with the V-ATPase was shown at the cellular level by reduced H+ transport activity of tonoplast vesicles isolated from sos2-2 cells relative to vesicles from wild-type cells. In addition, seedlings of the det3 mutant, which has reduced V-ATPase activity, were found to be severely salt sensitive. Our results suggest that regulation of V-ATPase activity is an additional key function of SOS2 in coordinating changes in ion transport during salt stress and in promoting salt tolerance.  相似文献   

9.
10.
11.
12.
13.

Key message

This is the first report on the function of a member of the CIPK family in Populus euphratica.

Abstract

The Ca2+-dependent salt overly sensitive (SOS) pathway has been shown to play an essential role in maintaining ion homeostasis and conferring salt tolerance. One component of the SOS pathway, SOS1, was identified in the salt-resistant tree P. euphratica. In this study, we identified and functionally characterized another component of the SOS pathway in this tree called PeSOS2 or PeCIPK26. On the basis of protein sequence similarity and complementation studies in Arabidopsis, PeCIPK26 was concluded to be the functional homolog of Arabidopsis AtSOS2. Yeast two-hybrid assays revealed that PeCIPK26 can interact with four calcineurin B-like (CBL) genes, i.e., PeCBL1, PeCBL4/PeSOS3, PeCBL9 and PeCBL10. Autophosphorylation assays showed that PeCIPK26 is an active protein kinase. Expression profile analysis demonstrated that PeCIPK26 is expressed in root, stem and leaf, and throughout the cell including cell membrane, cytoplasm and nucleus; in addition, it can be induced under salt-stress treatment. Functions of PeCIPK26 in salt tolerance were evaluated by gene overexpression in Arabidopsis cipk24 mutants. The better salt tolerance of transgenic plants relative to mutants was shown by their higher germination rate, lower Na+ accumulation and higher capacity to discharge Na+ when grown with NaCl. These results suggest the involvement of PeCIPK26 in the salt-stress response of P. euphratica.  相似文献   

14.
15.
16.

Background

Previous studies have shown that plant mitochondrial movements are myosin-based along actin filaments, which undergo continuous turnover by the exchange of actin subunits from existing filaments. Although earlier studies revealed that actin filament dynamics are essential for many functions of the actin cytoskeleton, there are little data connecting actin dynamics and mitochondrial movements.

Methodology/Principal Findings

We addressed the role of actin filament dynamics in the control of mitochondrial movements by treating cells with various pharmaceuticals that affect actin filament assembly and disassembly. Confocal microscopy of Arabidopsis thaliana root hairs expressing GFP-FABD2 as an actin filament reporter showed that mitochondrial distribution was in agreement with the arrangement of actin filaments in root hairs at different developmental stages. Analyses of mitochondrial trajectories and instantaneous velocities immediately following pharmacological perturbation of the cytoskeleton using variable-angle evanescent wave microscopy and/or spinning disk confocal microscopy revealed that mitochondrial velocities were regulated by myosin activity and actin filament dynamics. Furthermore, simultaneous visualization of mitochondria and actin filaments suggested that mitochondrial positioning might involve depolymerization of actin filaments on the surface of mitochondria.

Conclusions/Significance

Base on these results we propose a mechanism for the regulation of mitochondrial speed of movements, positioning, and direction of movements that combines the coordinated activity of myosin and the rate of actin turnover, together with microtubule dynamics, which directs the positioning of actin polymerization events.  相似文献   

17.
Rab GTPases play an important role in regulating intracellular vesicular trafficking in eukaryotic cells. Previously, we found that Oryza sativa rice Rab11 (OsRab11) is required for the regulation of vesicular trafficking from the trans- Golgi network (TGN) to the plasma membrane (PM) and/or vacuoles. To further elucidate the relationship between vesicular trafficking and abiotic and biotic stresses, we determined OsRab11 expression levels under several environmental stress conditions. OsRab11 expression was induced by pathogens, jasmonic acid (JA), and high salt treatment. Under high salt conditions, dominant negative OsRab11(S28N) mutant plants exhibited a hypersensitive phenotype similar to that of sos1-1, whereas overexpressed-OsRab11 plants showed resistance to high salt stress. When the expression of vacuolar and PM Na+/H+ antiporter genes such as AtNHX1, AtNHX2, and AtSOS1 was examined, there was no significant difference between the wild-type and OsRab11(S28N) mutant plants. However, PM trafficking of AtSOS1-green fluorescent protein (GFP) in 35S::AtSOS1-GFP sos1-1 plants was severely impaired by T7-OsRab11(S28N) expression. Similarly, vacuolar trafficking of AtNHX2-GFP was inhibited by T7-OsRab11 (S28N) expression. These results indicate that trafficking of PM and vacuolar antiporter proteins by OsRab11 is important for high salt stress resistance.  相似文献   

18.

Key message

We studied the salt stress tolerance of two accessions isolated from different areas of the world (Norway and Tunisia) and characterized the mechanism(s) regulating salt stress in Brachypodium sylvaticum Osl1 and Ain1.

Abstract

Perennial grasses are widely grown in different parts of the world as an important feedstock for renewable energy. Their perennial nature that reduces management practices and use of energy and agrochemicals give these biomass crops advantages when dealing with modern agriculture challenges such as soil erosion, increase in salinized marginal lands and the runoff of nutrients. Brachypodium sylvaticum is a perennial grass that was recently suggested as a suitable model for the study of biomass plant production and renewable energy. However, its plasticity to abiotic stress is not yet clear. We studied the salt stress tolerance of two accessions isolated from different areas of the world and characterized the mechanism(s) regulating salt stress in B. sylvaticum Osl1, originated from Oslo, Norway and Ain1, originated from Ain-Durham, Tunisia. Osl1 limited sodium transport from root to shoot, maintaining a better K/Na homeostasis and preventing toxicity damage in the shoot. This was accompanied by higher expression of HKT8 and SOS1 transporters in Osl1 as compared to Ain1. In addition, Osl1 salt tolerance was accompanied by higher abundance of the vacuolar proton pump pyrophosphatase and Na+/H+ antiporters (NHXs) leading to a better vacuolar pH homeostasis, efficient compartmentation of Na+ in the root vacuoles and salt tolerance. Although preliminary, our results further support previous results highlighting the role of Na+ transport systems in plant salt tolerance. The identification of salt tolerant and sensitive B. sylvaticum accessions can provide an experimental system for the study of the mechanisms and regulatory networks associated with stress tolerance in perennials grass.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号