首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We measured, by fluorescence correlation spectroscopy, the motion of actin filaments in solution during hydrolysis of ATP by acto-heavy meromyosin (acto-HMM). The method relies on the fact that the intensity of fluorescence fluctuates as fluorescently labeled actin filaments enter and leave a small sample volume. The rapidity of these number fluctuations is characterized by the autocorrelation function, which decays to 0 in time that is related to the average velocity of translation of filaments. The time of decay of the autocorrelation function of bare actin filaments in solution was 10.59 +/- 0.85 s. Strongly bound (rigor) heads slowed down the diffusion. Direct observation of filaments under an optical microscope showed that addition of HMM did not change the average length or flexibility of actin filaments, suggesting that the decrease in diffusion was not due to a HMM-induced change in the shape of filaments. Rather, slowing down of translational motion was caused by an increase in the volume of the diffusing complex. Surprisingly, the addition of ATP to acto-HMM accelerated the motion of actin filaments. The acceleration was the greatest at the low molar ratios of HMM:actin. Direct observation of filaments under an optical microscope showed that in the presence of ATP the average length of filaments did not change and that the filaments became stiffer, suggesting that acceleration of diffusion was not due to an ATP-induced increase in flexibility of filaments. These results show that some of the energy of splitting of ATP is impaired to actin filaments and suggest that 0.06 +/- 0.02 of HMM interferes with the diffusion of actin filaments during hydrolysis of ATP.  相似文献   

2.
Cytochalasin D strongly inhibits the faster components in the reactions of actin filament depolymerization and elongation in the presence of 10 mM Tris-Cl-, pH 7.8, 0.2 mM dithiothreitol, 1 mM MgCl2, 0.1 mM CaCl2, and 0.2 mM ATP or ADP. Assuming an exclusive and total capping of the barbed end by the drug, the kinetic parameters derived at saturation by cytochalasin D refer to the pointed end and are 10-15-fold lower than at the barbed end. In ATP, the critical concentration increases with cytochalasin D up to 12-fold its value when both ends are free; as a result of the lowering of the free energy of nucleation by cytochalasin D, short oligomers of F-actin exist just above and below the critical concentration. Cytochalasin D interacts strongly with the barbed ends independently of the ADP-G-actin concentration (K = 0.5 nM-1). In contrast, the affinity of cytochalasin D decreases cooperatively with increasing ATP-G-actin concentration. These data are equally well accounted for by two different models: either cytochalasin D binds very poorly to ATP-capped filament ends whose proportion increases with actin concentration, or cytochalasin D binds equally well to ATP-ends and ADP-ends and also binds to actin dimers in ATP but not in ADP. A linear actin concentration dependence of the rate of growth was found at the pointed end, consistent with the virtual absence of an ATP cap at that end.  相似文献   

3.
An actin filament sliding on myosin molecules in the presence of an extremely low concentration of ATP exhibited a staggered movement. Longitudinally sliding movement of the filament was frequently interrupted by its non-sliding, fluctuating movements both in the longitudinal and transversal directions. Intermittent sliding movements of an actin filament indicate establishment of a coordination of ATP-mediated active sites distributed along the filament.  相似文献   

4.
Muscle contraction and other forms of cell motility occur as a result of cyclic interactions between myosin molecules and actin filaments. Force generation is generally attributed to ATP-driven structural changes in myosin, whereas a passive role is ascribed to actin. However, some results challenge this view, predicting structural changes in actin during motor activity, e.g., when the actin filaments slide on a myosin-coated surface in vitro. Here, we analyzed statistical properties of the sliding filament paths, allowing us to detect changes of this type. It is interesting to note that evidence for substantial structural changes that led to increased bending flexibility of the filaments was found in phalloidin-stabilized, but not in phalloidin-free, actin filaments. The results are in accordance with the idea that a high-flexibility structural state of actin is a prerequisite for force production, but not the idea that a low-to-high flexibility transition of the actin filament should be an important component of the force-generating step per se. Finally, our data challenge the general view that phalloidin-stabilized filaments behave as native actin filaments in their interaction with myosin. This has important implications, since phalloidin stabilization is a routine procedure in most studies of actomyosin function.  相似文献   

5.
Fully exposed aromatic amino acid side chains on the surface of proteins can act as donors in the formation of πD−πA1 charge transfer complexes with the acceptor 1-methyl-3-carbamidopyridinium chloride (1-methylnicotinamide chloride) (Hinman et al., 1974). A study of the surface aromatic donor residues of native trypsin in the pH range 3 to 9 indicates that two of the four tryptophan and about five of the ten tyrosine residues are sufficiently exposed to bind MNCl2 and give rise to characteristic charge transfer absorption spectra. Between about pH 4 and pH 8, there is an increase in the overall charge transfer absorbance of the system that parallels the pH activity profile of the enzyme. An analysis of the charge transfer properties of the complex at both ends of the pH curve indicates that the observed change is due to an increase in the Trp-MNCl association constant of one of the two exposed tryptophan residues. A similar investigation of the pancreatic trypsin inhibitor-trypsin complex revealed a single available tryptophan residue whose association constant did not change with pH. Other chemical and physical evidence strongly suggests that access to the indole ring of Trp215 is blocked by the bound inhibitor molecule in the inhibitor-trypsin complex, thus implicating Trp215 as the residue with the pH-dependent association constant. If this interpretation is correct, the observed changes in the charge transfer properties of Trp215, whose peptide bond forms a part of the specificity pocket of the enzyme (Krieger et al., 1974), could serve to monitor conformational rearrangements or flexibility in the region of the enzyme that is directly concerned with the binding of substrates. The implications of the charge transfer study are discussed in terms of the crystal structure models for diisopropylphosphorofluoridate and benzamidine-inhibited trypsins, and are compared with results obtained by other solution techniques used for probing tertiary structure.  相似文献   

6.
Glycerol-extracted insect fibrillar muscle fibres in rigor exhibited both an elastic and a plastic phase in the length-tension diagram. The transition between these phases took place at a critical tension, the yield point or elastic limit. In the plastic phase the apparent static elastic modulus became zero, whereas the immediate elastic modulus (measured by rapid length changes completed within 4 ms) exhibited no abrupt change at the yield point. The tension value of the yield point (but not immediate stiffness) was lowered by addition of AMP-PNP and was partially restored by washing out AMP-PNP. The dependence of the critical tension at which plastic flow begins on cooperative cross bridge behaviour is discussed in terms of breaking and reforming acto-myosin linkages. Evidence is presented that addition of AMP-PNP induces slippage of cross bridges on the actin filament by affecting the interaction between myosin and actin.  相似文献   

7.
To evaluate the role of the hydration layer on the protein surface of actomyosin, we compared the effects of urea and guanidine-HCl on the sliding velocities and ATPase activities of the actin-heavy meromyosin (HMM) system. Both chemicals denature proteins, but only urea perturbs the hydration layer. Both the sliding velocity of actin filaments and actin-activated ATPase activity decreased with increasing urea concentrations. The sliding movement was completely inhibited at 1.0 M urea, while actin filaments were bound to HMM molecules fixed on the glass surface. Guanidine-HCl (0-0.05 M) drastically decreased both the sliding velocity and ATPase activation of acto-HMM complexes. Under this condition, actin filaments almost detached from HMM molecules. In contrast, the ATPase activity of HMM without actin filaments was almost independent of urea concentrations <1.0 M and guanidine-HCl concentrations <0.05 M. An increase in urea concentrations up to 2.0 M partly induced changes in the ternary structure of HMM molecules, while the actin filaments were stable in this concentration range. Hydration changes around such actomyosin complexes may alter both the stability of part of the myosin molecules, and the affinity for force transmission between actin filaments and myosin heads.  相似文献   

8.
Subtilisin cleaved actin was shown to retain several properties of intact actin including the binding of heavy meromyosin (HMM), the dissociation from HMM by ATP, and the activation of HMM ATPase activity. Similar Vmax but different Km values were obtained for acto-HMM ATPase with the cleaved and intact actins. The ATPase activity of HMM stimulated by copolymers of intact and cleaved actin showed a linear dependence on the fraction of intact actin in the copolymer. The most important difference between the intact and cleaved actin was observed in an in vitro motility assay for actin sliding movement over an HMM coated surface. Only 30% of the cleaved actin filaments appeared mobile in this assay and moreover, the velocity of the mobile filaments was approximately 30% that of intact actin filaments. These results suggest that the motility of actin filaments can be uncoupled from the activation of myosin ATPase activity and is dependent on the structural integrity of actin and perhaps, dynamic changes in the actin molecule.  相似文献   

9.
Tropomyosin as a regulator of the sliding movement of actin filaments   总被引:1,自引:0,他引:1  
Mizuno H  Hamada A  Shimada K  Honda H 《Bio Systems》2007,90(2):449-455
We examined the capacity of tropomyosin molecules regulating the sliding movement of actin filaments on myosin molecules in the presence of ATP molecules to be hydrolyzed. For this objective, we prepared tropomyosin molecules modified to be a little bit stiffer compared to the intact ones by applying a fixed cross-linker between a pair of twisted tropomyosin monomers. The cross-linked tropomyosin molecules, when complexed with actin filaments, were found to inhibit the sliding movement of the filaments on myosin molecules even in the absence of calcium-regulated troponin molecules. It is then suggested that the mechanical flexibility of tropomyosin molecules may be instrumental to actualizing the proper functional regulation of the sliding movement of actin filaments.  相似文献   

10.
Suzuki et al. [Biochemistry 28, 6513-6518 (1989)] have shown that, when F-actin is mixed with inert high polymer, a large number of actin filaments closely align in parallel with overlaps to form a long and thick bundle. The bundle may be designated non-polar, as the constituent filaments are random in polarity (Suzuki et al. 1989). I prepared non-polar bundles of F-actin using methylcellulose (MC) as the high polymer, exposed them to heavy meromyosin (HMM) in the presence of ATP under a light microscope, and followed their morphological changes in the continuous presence of MC. It was found that bundles several tens of micrometers long contracted to about one-third the initial length, while becoming thicker, in half a minute after exposure to HMM. Subsequently, each bundle was split longitudinally into several bundles in a stepwise manner, while the newly formed ones remained associated together at one of the two ends. The product, an aster-like assembly of actin bundles, was morphologically quiescent; that is, individual bundles never contracted upon second exposure to HMM and ATP, although they were still longer than the F-actin used. Bundles in this state consisted of filaments with parallel polarity as examined by electron microscopy. This implies that non-polar bundles were transformed into assemblies of polar bundles with ATP hydrolysis by HMM. Importantly, myosin subfragment-1 caused neither contraction nor transformation. These results are interpreted as follows. In the presence of ATP, the two-headed HMM molecule was able to cross-bridge antiparallel actin filaments, as well as parallel ones.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Polymerization dynamics of single actin filaments is investigated theoretically using a stochastic model that takes into account the hydrolysis of ATP-actin subunits, the geometry of actin filament tips, and the lateral interactions between the monomers as well as the processes at both ends of the polymer. Exact analytical expressions are obtained for the mean growth velocity, for the dispersion in the length fluctuations, and the nucleotide composition of the actin filaments. It is found that the ATP hydrolysis has a strong effect on dynamic properties of single actin filaments. At high concentrations of free actin monomers, the mean size of the unhydrolyzed ATP-cap is very large, and the dynamics is governed by association/dissociation of ATP-actin subunits. However, at low concentrations the size of the cap becomes finite, and the dissociation of ADP-actin subunits makes a significant contribution to overall dynamics. Actin filament length fluctuations reach a sharp maximum at the boundary between two dynamic regimes, and this boundary is always larger than the critical concentration for the actin filament's growth at the barbed end, assuming the sequential release of phosphate. Random and sequential mechanisms of hydrolysis are compared, and it is found that they predict qualitatively similar dynamic properties at low and high concentrations of free actin monomers with some deviations near the critical concentration. The possibility of attachment and detachment of oligomers in actin filament's growth is also discussed. Our theoretical approach is successfully applied to analyze the latest experiments on the growth and length fluctuations of individual actin filaments.  相似文献   

12.
F-actin at steady state in the presence of ATP partially depolymerized to a new steady state upon mechanical fragmentation. The increase in critical concentration with the number concentration of filaments has been quantitatively studied. The data can be explained by a model in which the preferred pathway for actin association-dissociation reactions at steady state in the presence of ATP involves binding of G-actin . ATP to filaments, ATP hydrolysis, and dissociation of G-actin . ADP which is then slowly converted to G-actin . ATP. As a consequence of the slow exchange of nucleotide on G-actin, the respective amounts of G-actin . ATP and G-actin . ADP coexisting with F-actin at steady state depend on the filament number concentration. G-actin coexisting with F-actin at zero number concentration of filaments would then consist of G-actin . ATP only, while the critical concentration obtained at infinite number of filaments would be that for G-actin . ADP. Values of 0.35 and 8 microM, respectively, were found for these two extreme critical concentrations for skeletal muscle actin at 20 degrees C, pH 7.8, 0.1 mM CaCl2, 1 mM MgCl2, and 0.2 mM ATP. The same value of 8 microM was directly measured for the critical concentration of G-actin . ADP polymerized in the presence of ADP and absence of ATP, and it was unaffected by fragmentation. These results have important implications for experiments in which critical concentrations are compared under conditions that change the filament number concentrations.  相似文献   

13.
Summary Ring formed actin filaments were observed in tobacco BY-2 cells. The change of this structure during culture was followed by fluorescence microscopy.  相似文献   

14.
In contrast to the actin filaments of muscle, which are stabilized by special proteins, actin filaments of the cytoskeleton are highly dynamic. In vitro observations at room temperature have led to the conclusion that the hydrolysis of ATP, which accompanies the polymerization of ATP-containing monomers, destabilizes the filaments of the actin skeleton. Many functions of this skeleton, such as signal transduction, the anchoring of cell adhesion complexes, and the transfer and generation of pulling forces, can obviously only be adequately performed by stable filaments. Here it is assumed that, at room temperature, the interaction of ADP-containing monomers is impaired by complexed water molecules that partly shield the binding surfaces. The possibility that, at higher temperatures, the interaction of the monomers is strong enough to prevent spontaneous filament depolymerization is explored. Using mechanical models that take into account binding forces and energies, the polymerization cycle expected under these conditions is described. It is shown that ATP serves primarily to prevent incorrect binding of the incoming monomer to the end of the filament ('adjusted fit'). In addition, it provides the free energy needed for disassembly of the expected stable filaments.  相似文献   

15.
We recently refined the in vitro motility assay for studies of actomyosin function to achieve rectified myosin induced sliding of actin filaments. This paves the way, both for detailed functional studies of actomyosin and for nanotechnological applications. In the latter applications it would be desirable to use actin filaments for transportation of cargoes (e.g., enzymes) between different predetermined locations on a chip. We here describe how single quantum dot labelling of isolated actin filaments simultaneously provides handles for cargo attachment and bright and photostable fluorescence labels facilitating cargo detection and filament tracking. Labelling was achieved with preserved actomyosin function using streptavidin-coated CdSe quantum dots (Qdots). These nanocrystals have several unique physical properties and the present work describes their first use for functional studies of isolated proteins outside the cell. The results, in addition to the nanotechnology developments, open for new types of in vitro assays of isolated biomolecules.  相似文献   

16.
Caldesmon, calmodulin-, and actin-binding protein of chicken gizzard did not affect the process of polymerization of actin induced by 0.1 M KCl. Caldesmon binds to F-actin, thus inhibiting the gelation action of actin binding protein (ABP; filamin). Low shear viscosity and flow birefringence measurements revealed that in a system of calmodulin, caldesmon, ABP, and F-actin, gelation occurs in the presence of micromolar Ca2+ concentrations, but not in the absence of Ca2+. Electron microscopic observations showed the Ca2+-dependent formation of actin bundles in this system. These results were interpreted by the flip-flop mechanism: in the presence of Ca2+, a calmodulin-caldesmon complex is released from actin filaments on which ABP exerts its gelating action. On the other hand, in the absence of Ca2+, caldesmon remains bound to actin filaments, thus preventing the action of ABP.  相似文献   

17.
Summary Mouse eggs at fertilization were permeated with glycerol solutions and then reacted with heavy meromyosin to show actin filaments by electron microscopy. The meiotic area of the egg surface is devoid of microvilli and is supported by a thick layer (0.6–0.8 m in width) of submembranous filaments. A much thinner layer (less than 0.3 m) is present in the remaining non-meiotic microvillous area and underlying its membrane is a very thick layer of cross-filaments and filament bundles.  相似文献   

18.
Electron microscopy of directly frozen giant cells of characean algae shows a continuous, tridimensional network of anastomosing tubes and cisternae of rough endoplasmic reticulum which pervade the streaming region of their cytoplasm. Portions of this endoplasmic reticulum contact the parallel bundles of actin filaments at the interface with the stationary cortical cytoplasm. Mitochondria, glycosomes, and other small cytoplasmic organelles enmeshed in the endoplasmic reticulum network display Brownian motion while streaming. The binding and sliding of endoplasmic reticulum membranes along actin cables can also be directly visualized after the cytoplasm of these cells is dissociated in a buffer containing ATP. The shear forces produced at the interface with the dissociated actin cables move large aggregates of endoplasmic reticulum and other organelles. The combination of fast-freezing electron microscopy and video microscopy of living cells and dissociated cytoplasm demonstrates that the cytoplasmic streaming depends on endoplasmic reticulum membranes sliding along the stationary actin cables. Thus, the continuous network of endoplasmic reticulum provides a means of exerting motive forces on cytoplasm deep inside the cell distant from the cortical actin cables where the motive force is generated.  相似文献   

19.
Myosin molecules contacting an actin filament in the presence of ATP were found to regulate the filamental fluctuations due to ATP hydrolysis in a communicative manner along the filament. As an evidence of the occurrence of the communication, ATP-activated fluctuating displacements of the filament in the direction perpendicular to its longitudinal axis were identified to propagate at a finite velocity not less than about 0.2 μm/s unidirectionally along the filament.  相似文献   

20.
We have investigated polymerization and the number of SH-groups of monomeric actin exposed in the presence of (beta, gamma)-substituted ATP-analogs. Actin, when depolymerized in a buffer containing 10 equiv. of APPCP exposes 4 thiol groups. The time course of the SH-titration is similar to that obtained when F-actin is depolymerized in a nucleotide free buffer. When actin is depolymerized in a buffer containing 10 equiv. of APPNP it also exposes 4 thiols. However, thiol-titration follows different kinetics. While one SH group reacts quickly the reaction of 3 others is retarded. We conclude that APPNP exhibits a shielding effect on part of the thiols for a period of time, while APPCP does not. In agreement with this, in the presence of APPNP yield of polymerization as well as stability against denaturation are distinctly higher than without added nucleotide or in the presence of APPCP. In line with this a hydrolysis product, most probably APPNH2, was associated with the filaments, as indicated by the replacement of tritiated ADP during polymerization, and from analysis of the attached nucleotide. Under the same conditions APPCP replaced tritiated ADP only to a small extent. The data indicate that APPNP interacts with monomeric actin much less than ATP and still less than ADP, but more so APPCP. APPNP is cleaved by actin ATPase and a hydrolysis product is incorporated into filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号