首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In hepatocytes, epidermal growth factor (EFG) (a) increased the rate of 45Ca2+ exchange in cells incubated at 1.3 mM extracellular Ca2+, (b) increased the activity of glycogen phosphorylase a and the intracellular free Ca2+ concentration (measured with quin2) in a process dependent on the concentration of extracellular Ca2+, and (c) enhanced the increase in glycogen phosphorylase activity which follows the addition of Ca2+ to cells previously incubated in the absence of Ca2+. It is concluded that EGF stimulates plasma-membrane Ca2+ inflow. 2. The effects of the combination of EGF and vasopressin on the rate of 45Ca2+ exchange and on the rate of increase in glycogen phosphorylase activity were the same as those of vasopressin alone. 3. The amount of 45Ca2+ released by EGF from internal stores was about 30% of that released by vasopressin. No detectable increase in [3H]inositol mono-, bis- or tris-phosphate was observed after the addition of EGF to cells labelled with myo-[3H]inositol. 4. In hepatocytes isolated from rats treated with pertussis toxin, the effects of EGF and vasopressin on phosphorylase activity (measured at 1.3 mM-Ca2+) and on the rate of Ca2+ inflow (measured with quin2) were markedly decreased compared with those in normal cells. 5. Treatment with pertussis toxin did not impair the ability of vasopressin to release Ca2+ from internal stores, but decreased vasopressin-stimulated [3H]inositol polyphosphate formation by 50%. 6. It is concluded that the mechanism(s) by which vasopressin and EGF stimulate plasma-membrane Ca2+-inflow transporters in hepatocytes involves a GTP-binding regulatory protein sensitive to pertussis toxin, and does not require an increase in the concentration of inositol trisphosphate comparable with that which induces the release of Ca2+ from the endoplasmic reticulum.  相似文献   

2.
Vasopressin caused a 40% inhibition of 45Ca uptake after the addition of 0.1 mM-45Ca2+ to Ca2+-deprived hepatocytes. At 1.3 mM-45Ca2+, vasopressin and ionophore A23187 each caused a 10% inhibition of 45Ca2+ uptake, whereas La3+ increased the rate of 45Ca2+ uptake by Ca2+-deprived cells. Under steady-state conditions at 1.3 mM extracellular Ca2+ (Ca2+o), vasopressin and La3+ each increased the rate of 45Ca2+ exchange. The concentrations of vasopressin that gave half-maximal stimulation of 45Ca2+ exchange and glycogen phosphorylase activity were similar. At 0.1 mM-Ca2+o, La3+ increased, but vasopressin did not alter, the rate of 45Ca2+ exchange. The results of experiments performed with EGTA or A23187 or by subcellular fractionation indicate that the Ca2+ taken up by hepatocytes in the presence of La3+ is located within the cell. The addition of 1.3 mM-Ca2+o to Ca2+-deprived cells caused increases of approx. 50% in the concentration of free Ca2+ in the cytoplasm [( Ca2+]i) and in glycogen phosphorylase activity. Much larger increases in these parameters were observed in the presence of vasopressin or ionophore A23187. In contrast with vasopressin, La3+ did not cause a detectable increase in glycogen phosphorylase activity or in [Ca2+]i. It is concluded that an increase in plasma membrane Ca2+ inflow does not by itself increase [Ca2+]i, and hence that the ability of vasopressin to maintain increased [Ca2+]i over a period of time is dependent on inhibition of the intracellular removal of Ca2+.  相似文献   

3.
Preparations of enzymically dispersed rat pancreatic cells hydrolyse externally added nucleoside triphosphates and diphosphates at high rates in the presence of Mg2+ or Ca2+. The lack of response to specific inhibitors and activators differentiates this hydrolytic activity from that of other well-characterized ion-transporting ATPases. Studies based on inactivation of this hydrolytic activity by the covalently reacting, slowly permeating probe diazotized sulphanilic acid indicated that this nucleoside tri- and di-phosphatase is primarily a plasma-membrane ecto-enzyme. It is the major ATPase activity associated with intact cells, homogenates and isolated plasma-membrane fractions. Concanavalin A stimulates this ATPase activity of intact cells and isolated plasma-membrane fractions. The insensitivity of this ATPase activity to univalent ions and inhibitors of pancreatic electrolyte secretion, taken together with the evidence that the active site is externally located, suggests that this enzyme is not directly involved in HCO3- secretion in the pancreas. Its actual function remains unknown.  相似文献   

4.
Isolated rat hepatocytes were loaded with the Ca2+ indicator fura-2 to measure cytosolic free Ca2+ concentrations ([Ca2+]i) in individual cells by digital ratio imaging microscopy. Stimulation with 0.1 nM vasopressin, 0.5 microM phenylephrine, or 0.5 microM ATP caused repetitive spikes of high [Ca2+]i in a high percentage of cells, in agreement with Woods et al. (Woods, N. M., Cuthbertson, K. S. R., and Cobbold, P. H. (1986) Nature 319, 600-602), but unlike the results of Monck et al. (Monck, J. R., Reynolds, E. E., Thomas, A. P., and Williamson, J. R. (1988) J. Biol. Chem. 263, 4569-4575). Reduction in extracellular [Ca2+] decreased the frequency but not the amplitude of the spikes, suggesting that the spikes result from dumping of intracellular stores and that the entry of extracellular Ca2+ affects only the rate of replenishment of those stores. Membrane depolarization failed to elevate [Ca2+]i and had an effect similar to removal of extracellular Ca2+ in decreasing the frequency of agonist-evoked [Ca2+]i oscillations or inhibiting them altogether, arguing against any significant role for voltage-operated Ca2+ channels.  相似文献   

5.
An initial rapid phase and a subsequent slow phase of 45Ca2+ uptake were observed following the addition of 45Ca2+ to Ca2+-deprived hepatocytes. The magnitude of the rapid phase increased 15-fold over the range 0.1-11 mM extracellular Ca2+ (Ca2+o) and was a linear function of [Ca2+]o. The increases in the rate of 45Ca2+ uptake were accompanied by only small increases in the intracellular free Ca2+ concentration. In cells made permeable to Ca2+ by treatment with saponin, the rate of 45Ca2+ uptake (measured at free Ca2+ concentrations equal to those in the cytoplasm of intact cells) increased as the concentration of saponin increased from 1.4 to 2.5 micrograms per mg wet weight cells. Rates of 45Ca2+ uptake by cells permeabilized with an optimal concentration of saponin were comparable with those of intact cells incubated at physiological [Ca2+o], but were substantially lower than those for intact cells incubated at high [Ca2+o]. It is concluded that Ca2+ which enters the hepatocyte across the plasma membrane is rapidly removed by binding and transport to intracellular sites and by the plasma membrane (Ca2+ + Mg2+)-ATPase and the plasma membrane Ca2+ inflow transporter is not readily saturated with Ca2+o.  相似文献   

6.
The role of the TRP-1 protein, an animal cell homologue of the Drosophila transient receptor potential Ca2+ channel, in store-operated Ca2+ inflow in Xenopus laevis oocytes was investigated. A strategy involving RT-PCR and 3 and 5 rapid amplification of cDNA ends (RACE) was used to confirm and extend previous knowledge of the nucleotide and predicted amino acid sequences of Xenopus TRP-1 (xTRP-1). The predicted amino acid sequence was used to prepare an anti-TRP-1 polyclonal antibody which detected the endogenous oocyte xTRP-1 protein and the human TRPC-1 protein expressed in Xenopus oocytes. Ca2+ inflow (measured using fura-2) initiated by 3-deoxy-3-fluoroinositol 1,4,5-trisphosphate (InsP3F) or lysophosphatidic acid (LPA) was completely inhibited by low concentrations of lanthanides (IC50 = 0.5 M), indicating that InsP3F and LPA principally activate store-operated Ca2+ channels (SOCs). Antisense cRNA or antisense oligodeoxynucleotides, based on different regions of the xTRP-1 cDNA sequence, when injected into Xenopus oocytes, did not inhibit InsP3F-, LPA- or thapsigargin-stimulated Ca2+ inflow. Oocytes expressing the hTRPC-1 protein, which is 96% similar to xTRP-1, exhibited no detectable enhancement of either basal or InsP3F-stimulated Ca2+ inflow and only a very small enhancement of LPA-stimulated Ca2+ inflow compared with control oocytes. It is concluded that the endogenous xTRP-1 protein is unlikely to be responsible for Ca2+ inflow through the previously-characterised Ca2+-specific SOCs which are found in Xenopus oocytes. It is considered that xTRP-1 is likely to be a receptor-activated non-selective cation channel such as the channel activated by maitotoxin.  相似文献   

7.
The role of the TRP-1 protein, an animal cell homologue of the Drosophila transient receptor potential Ca2+ channel, in store-operated Ca2+ inflow in Xenopus laevis oocytes was investigated. A strategy involving RT-PCR and 3' and 5' rapid amplification of cDNA ends (RACE) was used to confirm and extend previous knowledge of the nucleotide and predicted amino acid sequences of Xenopus TRP-1 (xTRP-1). The predicted amino acid sequence was used to prepare an anti-TRP-l polyclonal antibody which detected the endogenous oocyte xTRP-1 protein and the human TRPC-1 protein expressed in Xenopus oocytes. Ca2+ inflow (measured using fura-2) initiated by 3-deoxy-3-fluoroinositol 1,4,5-trisphosphate (InsP3F) or lysophosphatidic acid (LPA) was completely inhibited by low concentrations of lanthanides (IC50 = 0.5 microM), indicating that InsP3F and LPA principally activate store-operated Ca2+ channels (SOCs). Antisense cRNA or antisense oligodeoxynucleotides, based on different regions of the xTRP-1 cDNA sequence, when injected into Xenopus oocytes, did not inhibit InsP3F-, LPA- or thapsigargin-stimulated Ca2+ inflow. Oocytes expressing the hTRPC-1 protein, which is 96% similar to xTRP-1, exhibited no detectable enhancement of either basal or InsP3F-stimulated Ca2+ inflow and only a very small enhancement of LPA-stimulated Ca2+ in-flow compared with control oocytes. It is concluded that the endogenous xTRP-1 protein is unlikely to be responsible for Ca2+ inflow through the previously-characterised Ca2+ -specific SOCs which are found in Xenopus oocytes. It is considered that xTRP-1 is likely to be a receptor-activated non-selective cation channel such as the channel activated by maitotoxin.  相似文献   

8.
Role of Ca2+ for protein turnover in isolated rat hepatocytes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Experiments with bivalent-cation chelators (EGTA and EDTA), a Ca2+ ionophore (A23187) and a Ca2+-channel blocker (verapamil) indicate that Ca2+ is required for the lysosomal degradation of endogenous protein in hepatocytes. A distinction is made between lysosomal and non-lysosomal degradation by using the lysosomotropic agent methylamine. As Ca2+ does not appear to be required for the lysosomal degradation of endocytosed asialo-fetuin, the Ca2+-dependence for the degradation of endogenous protein is probably connected with the formation of autophagic vacuoles or the fusion of autophagic vacuoles with lysosomes. EGTA and EDTA had a slight inhibitory effect on the non-lysosomal degradation. This effect could be due to the activity of non-lysosomal Ca2+-dependent thiol proteinases. Together with previous experiments with thiol-proteinase inhibitors, the present experiments indicate that these proteinases have a very limited impact on the bulk protein degradation in the isolated hepatocytes.  相似文献   

9.
The subcellular distribution of 45Ca2+ accumulated by isolated rat hepatocytes exposed to dibutyryl cyclic AMP (dbcAMP) followed by vasopressin (Vp) was studied by means of a nondisruptive technique. When treated with dbcAMP followed by vasopressin, hepatocytes obtained from fed rats accumulated an amount of Ca2+ approximately fivefold higher than that attained under control conditions. Ca2+ released from the mitochondrial compartment by the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) accounted for only a minor portion of the accumulated Ca2+. The largest portion was released by the Ca2+ ionophore A23187 and was attributable to a nonmitochondrial compartment. DbcAMP + Vp-treatment also caused a maximal stimulation of glucose production and a twofold increase in cellular glucose 6-phosphate levels. In hepatocytes obtained from fasted rats, dbcAMP + Vp-stimulated Ca2+ accumulation was lower, although with the same subcellular distribution, and was associated with a minimal glucose production. In the presence of gluconeogenetic substrates (lactate plus pyruvate) hepatocytes from fasted rats were comparable to cells isolated from fed animals. However, Ca2+ accumulation and glucose 6-phosphate production could be dissociated in the absence of dbcAMP, in the presence of lactate/pyruvate alone. Under this condition in fact Vp induced only a minimal accumulation of Ca2+ in hepatocytes isolated from fasted rats, although glucose production was markedly increased. Moreover, treatment of fed rat hepatocytes with 1 mM ATP caused a maximal activation of glycogenolysis, but only a moderate stimulation of cellular Ca2+ accumulation. In this case, sequestration of Ca2+ occurred mainly in the mitochondrial compartment. By contrast, the addition of ATP to dbcAMP-pretreated hepatocytes induced a large accumulation of Ca2+ in a nonmitochondrial pool. Additional experiments using the fluorescent Ca2+ indicator Fura-2 showed that dbcAMP pretreatment can enlarge and prolong the elevation of cytosolic free Ca2+ caused by Vp. A nonmitochondrial Ca2+ pool thus appears mainly responsible for the Ca2+ accumulation stimulated by dbcAMP and Vp in isolated hepatocytes, and cyclic AMP seems able to activate Ca2+ uptake in such a nonmitochondrial pool.  相似文献   

10.
1. Slowly hydrolysable analogues of GTP were introduced into hepatocytes by incubating the cells in the absence of Mg2+ and in the presence of ATP4-. Experiments using guanosine 5'-[gamma-[35S]thio]triphosphate (GTP[35S])indicated that about 50% of the GTP[S] loaded into the cells was subsequently hydrolysed. 2. In cells loaded with GTP[S] and incubated in the absence of added extracellular Ca2+ (Ca2+o), the rate of activation of glycogen phosphorylase observed after addition of 1.3 mM-Ca2+o was 250% greater than the rate observed in unloaded cells. Smaller effects (130%) were observed in cells loaded with either guanyl-5'-yl imidodiphosphate or guanosine 5-[beta-thio]diphosphate (GDP[S]). Cells loaded with adenosine 5'-[gamma-thio]triphosphate showed no increase in glycogen phosphorylase activity on addition of Ca2+o. 3. The effect of a submaximal concentration of GTP[S] on the Ca2+-induced activation of glycogen phosphorylase was additive with that of a half-maximally effective concentration of vasopressin. GTP[S] did not increase the effect of a maximally effective concentration of the hormone. 4. Cells loaded with GTP[S] exhibited an increased initial rate of 45Ca2+ exchange measured at 1.3 mM-Ca2+o. 5. GTP[S] did not affect the amount of 45Ca2+ exchanged by cells incubated at 0.1 mM-Ca2+o or the ability of vasopressin to release 45Ca2+ from these cells. 6. It is concluded that the introduction of slowly hydrolysable analogues of GTP to the liver cell cytoplasmic space stimulates the inflow of Ca2+ across the plasma membrane through a channel similar to that activated by vasopressin.  相似文献   

11.
Stimulatory GTP-binding Protein (Gs) and adenylate cyclase prepared from bovine brain cortices were co-reconstituted into asolectin vesicles with or without 1000-fold transmembrane Ca2+ gradient. The results showed that both basal activity and Gs-stimulated activity of adenylate cyclase were highest in proteoliposomes with a transmembrane Ca2+ gradient similar to physiological condition (1 M Ca2+ outside and 1 mM Ca2+ inside) and lowest when the transmembrane Ca2+ gradient was in the inverse direction. Such a difference could be diminished following dissipation of the transmembrane Ca2+ gradient by A23187. Comparable conformational changes of Gs in proteoliposomes were also observed when Gs was labeled with the fluorescence probe, acrylodan. These results may indicate that a proper transmembrane Ca2+ gradient is essential not only for higher adenylate cyclase activity but also for its stimulation by Gs.  相似文献   

12.
Conditions are described that allow chlortetracycline, a fluorescent probe of membrane-associated Ca2+, to monitor the content of the major exchangeable pool of intracellular Ca2+ present in the isolated rat hepatocyte. Chlortetracycline fluorescence is decreased in cells whose Ca2+ content is diminished by treatment either with carbonylcyanide-m-chlorophenylhydrazone or with ionophore A23187. Norepinephrine releases Ca2+ from this exchangeable pool and decreases both the fluorescence signal and its subsequent response to A23187. Previous suggestions that chlortetracycline fluorescence is localized in the mitochondria of liver and other cells is supported by comparison of the fluorescence that follows the addition of chlortetracycline to intact hepatocytes and to isolated hepatic microsomes and mitochondria. Identification of the hormone-responsive pool of Ca2+ with the mitochondria is strengthened by comparison of the total calcium content of mitochondria isolated from control and hormone-treated animals. The uptake and release of Ca2+ in control and hormone-treated hepatocytes rendered permeable by treatment with digitonin is also consistent with this interpretation.  相似文献   

13.
The treatment of H4-IIE cells (an immortalised liver cell line derived from the Reuber rat hepatoma) with thapsigargin, 2, 5-di-(tert-butyl)-1,4-benzohydroquinone, cyclopiazonic acid, or pretreatment with EGTA, stimulated Ca(2+) inflow (assayed using intracellular fluo-3 and a Ca(2+) add-back protocol). No stimulation of Mn(2+) inflow by thapsigargin was detected. Thapsigargin-stimulated Ca(2+) inflow was inhibited by Gd(3+) (maximal inhibition at 2 microM Gd(3+)), the imidazole derivative SK&F 96365, and by relatively high concentrations of the voltage-operated Ca(2+) channel antagonists, verapamil, nifedipine, nicardipine and the novel dihydropyridine analogues AN406 and AN1043. The calmodulin antagonists W7, W13 and calmidazolium also inhibited thapsigargin-induced Ca(2+) inflow and release of Ca(2+) from intracellular stores. No inhibition of either Ca(2+) inflow or Ca(2+) release was observed with calmodulin antagonist KN62. Substantial inhibition of Ca(2+) inflow by calmidazolium was only observed when the inhibitor was added before thapsigargin. Pretreatment of H4-IIE cells with pertussis toxin, or treatment with brefeldin A, did not inhibit thapsigargin-stimulated Ca(2+) inflow. Compared with freshly isolated rat hepatocytes, H4-IIE cells exhibited a more diffuse actin cytoskeleton, and a more granular arrangement of the endoplasmic reticulum (ER). In contrast to freshly isolated hepatocytes, the arrangement of the ER in H4-IIE cells was not affected by pertussis toxin treatment. Western blot analysis of lysates of freshly isolated rat hepatocytes revealed two forms of G(i2(alpha)) with apparent molecular weights of 41 and 43 kDa. Analysis of H4-IIE cell lysates showed only the 41 kDa form of G(i2(alpha)) and substantially less total G(i2(alpha)) than that present in rat hepatocytes. It is concluded that H4-IIE cells possess store-operated Ca(2+) channels which do not require calmodulin for activation and exhibit properties similar to those in freshly isolated rat hepatocytes, including susceptibility to inhibition by relatively high concentrations of voltage-operated Ca(2+) channel antagonists. In contrast to rat hepatocytes, SOCs in H4-IIE cells do not require G(i2(alpha)) for activation. Possible explanations for differences in the requirement for G(i2(alpha)) in the activation of Ca(2+) inflow are briefly discussed.  相似文献   

14.
Phenylephrine is known to stimulate translocation of protein kinase C in rat pinealocytes (Sugden, D., Vanecek, J., Klein, D.C., Thomas, T.P., and Anderson, W. B. (1985) Nature 314, 359-361). In the present study, the receptor mediating this effect was found to belong to the alpha 1-adrenoceptor subclass. Activation of this receptor is also known to produce a sustained increase in [Ca2+]i by increasing net influx (Sugden, A. L., Sugden, D., and Klein, D. C. (1985) J. Biol. Chem. 261, 11608-11612), which points to the possible importance of Ca2+ influx in the subcellular redistribution (activation) of protein kinase C in intact cells. This possibility was investigated by reducing extracellular Ca2+ ((Ca2+]o) with EGTA or by inhibiting Ca2+ influx with inorganic Ca2+ blockers. These treatments reduced alpha 1-adrenoceptor-mediated translocation of protein kinase C. This suggested that elevation of Ca2+ influx alone triggers activation of protein kinase C. In support of this, it was found that treatments which elevate Ca2+ influx, including increased extracellular K+ and addition of the Ca2+ ionophore A23187, cause redistribution of protein kinase C. The effect of K+ was blocked by nifedipine and that of A23187 by EGTA, indicating that effects of these agents are Ca2+-dependent. The possible role of phospholipase C activation in these effects was examined by measuring the formation of [3H]diacylglycerol by cells labeled with [3H]arachidonic acid. Although [3H]diacylglycerol formation was easily detected in the presence or absence of an effective concentration of an inhibitor of diacylglycerol kinase, none of the agents which cause rapid translocation of protein kinase C were found to cause a rapid increase in the generation of [3H]diacylglycerol. These findings establish that an increase in Ca2+ influx is sufficient to trigger translocation of protein kinase C. In addition, we found that a very close correlation exists between translocation of protein kinase C by phenylephrine, K+, and A23187 and their ability to potentiate beta-adrenergic stimulation of cAMP and cGMP accumulation. This provides strong support to the proposal that translocation of protein kinase C is required for potentiation of beta-adrenergic stimulation of pinealocyte cAMP and cGMP accumulation.  相似文献   

15.
The finding that negatively charged phospholipids activate the plasma-membrane (Ca2+ + Mg2+)-ATPase and that polycations counteract this stimulation suggest that negative charges in the environment of the ATPase protein could be important for its function. The aim of the present work was to investigate whether changing the charges on the ATPase protein itself by modifying the pH within the physiological range affects the activity of the purified plasma-membrane Ca2+ pump from stomach smooth muscle. Increasing the pH from 6.9 to 7.4 and using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA) as a Ca2+ buffer, doubled the ATPase activity at 0.3 microM-Ca2+ in the presence of 100% phosphatidylcholine (PC) or after substituting 20% of the PC by negatively charged phospholipids PtdIns, PtdIns4P, phosphatidylserine and phosphatidic acid. This stimulatory effect was due to an increased affinity of the enzyme for Ca2+, while the Vmax. remained unaffected. In the case of PtdIns(4,5)P2, a stimulatory effect upon alkalinization was only observed at a PtdIns(4,5)P2 concentration of 10%. When a concentration of 20% was used, alkalinization decreased the Vmax. and no stimulatory effect on the ATPase at 0.3 microM-Ca2+ could be observed. Alkalinization not only stimulated the purified Ca2+ pump, but it also increased the activity of the enzyme in a plasma-membrane-enriched fraction from stomach smooth muscle by a factor of 2.06. The ionophore A23187-induced Ca2+ uptake in closed inside-out vesicles also increased by a factor of 2.54 if the pH was changed from 6.9 to 7.4. This finding indicates that the effect of pH is most likely to be exerted at the cytoplasmic site of the Ca2+ pump protein.  相似文献   

16.
The incubation of isolated hepatocytes with the inhibitor of protein mono ADP-ribosylation, m-iodobenzylguanidine (MIBG), resulted in an increase in the size of the mitochondrial Ca2+ pool, without alteration of the non-mitochondrial Ca2+ store(s). This increase was abolished when the cytosolic free Ca2+ concentration ([Ca2+]i) was buffered by prior loading of the cells with fluo 3. Elevating [Ca2+]i by releasing the endoplasmic reticular Ca2+ store with 2,5-di-(tert-butyl)-1,4-hydroquinone resulted in a synergistic increase in the magnitude of the mitochondrial Ca2+ pool. A role for protein ADP-ribosylation in the intracellular regulation of mitochondrial Ca2+ homeostasis is suggested.  相似文献   

17.
The rate of Ca2+ efflux was determined with 45Ca2+ -loaded sarcoplasmic reticulum vesicles (mainly with the light fraction of vesicles) at pH 6.5 and 0 degrees C. The efflux depended on external Ca2+, Mg2+, ATP and ADP, but it was not activated by AMP. The results indicate that the efflux is derived from Ca2+ -Ca2+ exchange mediated by the phosphoenzyme (EP) of membrane-bound Ca2+ -ATPase. EP was formed with Ca2+ -loaded vesicles (light fraction) under similar conditions without added ADP. The subsequent addition of EGTA and ADP induced triphasic EP dephosphorylation. Three species of EP (EP1, EP2, and EP3) were distinguished on the basis of this dephosphorylation kinetics, EP1, EP2, and EP3, corresponding to the first, second, and third phases of the dephosphorylation. Dephosphorylation of EP1 and EP2 resulted in stoichiometric ATP formation, while dephosphorylation of EP3 led to stoichiometric Pi liberation. The rate of Ca2+ efflux was compatible with that of EP2 dephosphorylation, whereas it was much lower than the rate of EP1 dephosphorylation and much higher than the rate of EP3 dephosphorylation. The intravesicular Ca2+ concentration dependence of the rate of EP2 dephosphorylation agreed with that of the rate of Ca2+ efflux. The results suggest that isomerization between EP1 and EP2 is the rate-limiting process in the Ca2+ -Ca2+ exchange and that EP3 is not involved in this exchange.  相似文献   

18.
The rate of Ca2+ efflux was determined with 45Ca2+-loaded sarcoplasmic reticulum vesicles (mainly with the light fraction of vesicles) at pH 6.5 and 0°C. The efflux depended on external Ca2+, Mg2+, ATP and ADP, but it was not activated by AMP. The results indicate that the efflux is derived from Ca2+-Ca2+ exchange mediated by the phosphoenzyme (EP) of membrane-bound Ca2+-ATPase. EP was formed with Ca2+-loaded vesicles (light fraction) under similar conditions without added ADP. The subsequent addition of EGTA and ADP induced triphasic EP dephosphorylation. Three species of EP (EP1, EP2, and EP3) were distinguished on the basis of this dephosphorylation kinetics, EP1, EP2 and EP3, corresponding to the first, second, and third phases of the dephosphorylation. Dephosphorylation of EP1 and EP2 resulted in stoichiometric ATP formation, while dephosphorylation of EP3 led to stoichiometric Pi liberation. The rate of Ca2+ efflux was compatible with that of EP2 dephosphorylation, whereas it was much lower than the rate of EP1 dephosphorylation and much higher than the rate of EP3 dephosphorylation. The intravesicular Ca2+ concentration dependence of the rate of EP2 dephosphorylation agreed with that of the rate of Ca2+ efflux. The results suggest that isomerization between EP1 and EP2 is the rate-limiting process in the Ca2+-Ca2+ exchange and that EP3 is not involved in this exchange.  相似文献   

19.
Vasopressin stimulated gluconeogenesis from proline in hepatocytes from starved rats; this was attributed to an activation of oxoglutarate dehydrogenase (EC 1.2.4.2) [Staddon & McGivan (1984) Biochem. J. 217, 477-483]. The role of Ca2+ in the activation mechanism was investigated. (1) In the absence of extracellular Ca2+, vasopressin caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content that were markedly transient when compared with the effects in the presence of Ca2+. (2) Ca2+ added to cells stimulated for 2 min by vasopressin in the absence of extracellular Ca2+ sustained the initial effects of vasopressin. Ca2+ added 15 min after vasopressin, a time at which both the rate of gluconeogenesis and the cell oxoglutarate content were close to the control values, caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content. (3) Under conditions of cell-Ca2+ depletion, vasopressin had no effect on gluconeogenesis or cell oxoglutarate content. (4) Ionophore A23187 stimulated gluconeogenesis and caused a decrease in cell oxoglutarate content, but the phorbol ester 4 beta-phorbol 12-myristate 13-acetate had no effects. (5) These data suggest that the initial activation of oxoglutarate dehydrogenase by vasopressin is dependent on an intracellular Ca2+ pool and independent of extracellular Ca2+. For activation of a greater duration, a requirement for extracellular Ca2+ occurs. The activation of oxoglutarate dehydrogenase by A23187 is consistent with a mechanism involving Ca2+, but the lack of effect of 4 beta-phorbol 12-myristate 13-acetate indicates that protein kinase C is not involved in the mechanism of activation by vasopressin.  相似文献   

20.
1. Rates of Ca2+ inflow across the hepatocyte plasma membrane in the presence of vasopressin were estimated by using quin2. 2. Plots of the rate of Ca2+ inflow as a function of the intracellular quin2 concentration reached a plateau at about 1.7 mM intracellular quin2. Ca2+ inflow was inhibited by 60% in the presence of 400 microM-verapamil. 3. A plot of the rate of Ca2+ inflow as a function of the concentration of extracellular Ca2+ ([Ca2+]o) was biphasic. The second (slower) phase showed no sign of saturation at values of [Ca2+]o up to 5 mM. It is concluded that, in the presence of vasopressin, Ca2+ flows into the liver cell by two different processes, one of which is not readily saturated by Ca2+o. 4. The effect of the replacement of extracellular NaCl by choline or tetramethylammonium chloride on cellular Ca2+ movement was found to depend on the presence or absence of intracellular quin2. 5. In cells loaded with quin2 and incubated in the presence of choline or tetramethylammonium chloride, a small decrease in the basal intracellular free Ca2+ concentration ([Ca2+]i) was observed, and the increase in [Ca2+]i caused by the addition of vasopressin was considerably diminished when compared with cells incubated in the presence of NaCl. In cells loaded with quin2, replacement of NaCl by choline chloride caused a decrease in Ca2+ inflow in the presence of vasopressin, as measured by using quin2 or 45Ca2+ exchange, whereas no change in Ca2+ inflow was observed in the absence of vasopressin. 6. In cells not loaded with quin2, replacement of NaCl by choline chloride did not alter Ca2+ inflow either in the presence or in the absence of vasopressin. 7. It is concluded that (i) Ca2+ inflow through the basal and receptor-activated Ca2+ inflow systems does not involve the inward movement of Ca2+ in exchange for Na+ or the induction of Ca2+ inflow by intracellular Na+, and (ii) the presence of both intracellular quin2 and extracellular choline or tetramethylammonium chloride (in place of NaCl) inhibits Ca2+ inflow through the receptor-activated Ca2+ inflow system but not through the basal Ca2+ inflow system, and inhibits the release of Ca2+ from intracellular stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号