首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that lactoperoxidase (LPO) covalently coupled to polystyrene tissue culture flasks can be used to radioiodinate monolayer cell proteins that come into intimate contact with the LPO- polystyrene surface. These studies have now been extended to include a detailed examination of the class of iodinated polypeptides migrating with apparent molecular weights of 50,000 and 55,000 in SDS polyacrylamide gels. Whereas in cultured L929 cells the 55,000 band is predominantly iodinated, in thioglycollate-activated murine peritoneal macrophages the 55,000 and 50,000 bands are of equal intensity. It is possible that the marked degree of exposure of the 50,000 mol wt polypeptide to immobilized LPO is related to the unique strength of macrophages attachment. After labeling of both L929 cells and macrophages with immobilized LPO, all polypeptides in this molecular weight region were subjected to peptide mapping by simultaneous limited proteolysis and electrophoresis in a second SDS polyacrylamide slab gel. The results clearly show that the two major polypeptides in this region are identical within the limits of resolution of this technique. The 55,000 mol wt polypeptide can also be identified in Triton X-100 cytoskeletons from L929 cells after labeling with soluble LPO either before or after detergent lysis. We conclude that this cell surface polypeptide is in continuity with the cytoskeleton and is preferentially exposed to the substratum during attachment to polystyrene.  相似文献   

2.
[125I]TID, a small photoreactive lipophylic reagent, was used to label intrinsic proteins of rabbit and rat sarcoplasmic reticulum membranes. A 160,000 glycoprotein, the Ca2+-ATPase and polypeptides of mol. wt 53-55,000, 30,000, 20,000 and 6000 dalton were labelled suggesting that these proteins are integral membrane components.  相似文献   

3.
Monoclonal antibodies were prepared against a 46,000 mol wt major cytoplasmic protein from Drosophila melanogaster Kc cells. These antibodies reacted with the 46,000 and a 40,000 mol wt protein from Kc cells. Some antibodies showed cross-reaction with 55,000 (vimentin) and 52,000 mol wt (desmin) proteins from baby hamster kidney (BHK) cells that form intermediate sized filaments in vertebrate cells. In indirect immunofluorescence, the group of cross reacting antibodies stained a filamentous meshwork in the cytoplasm of vertebrate cells. In Kc cells the fluorescence seemed to be localized in a filamentous meshwork that became more obvious after the cells had flattened out on a surface. These cytoskeletal structures are heat-labile; the proteins in Kc or BHK cells rearrange after a brief heat shock, forming juxtanuclear cap structures.  相似文献   

4.
When Limulus sperm are induced to undergo the acrosomal reaction, a process, 50 mum in length, is generated in a few seconds. This process rotates as it elongates; thus the acrosomal process literally screws through the jelly of the egg. Within the process is a bundle of filaments which before induction are coiled up inside the sperm. The filament bundle exists in three stable states in the sperm. One of the states can be isolated in pure form. It is composed of only three proteins whose molecular weights (mol wt) are 43,000, 55,000, and 95,000. The 43,000 mol wt protein is actin, based on its molecular weight, net charge, morphology, G-F transformation, and heavy meromyosin (HMM) binding. The 55,000 mol wt protein is in equimolar ratio to actin and is not tubulin, binds tenaciously to actin, and inhibits HMM binding. Evidence is presented that both the 55,000 mol wt protein and the 95,000 mol wt protein (possibly alpha-actinin) are also present in Limulus muscle. Presumably these proteins function in the sperm in holding the actin filaments together. Before the acrosomal reaction, the actin filaments are twisted over one another in a supercoil; when the reaction is completed, the filaments lie parallel to each other and form an actin paracrystal. This change in their packing appears to give rise to the motion of the acrosomal process and is under the control of the 55,000 mol wt protein and the 95,000 mol wt protein.  相似文献   

5.
Immunoprecipitates of the T3 antigen prepared from HPB-ALL cells by using the monoclonal antibody UCH-T1 were analysed by SDS-polyacrylamide gel electrophoresis. Cells which had been biosynthetically labelled for up to 4 h gave a major polypeptide of mol. wt. 19 000 plus two weaker, more diffuse bands of mol. wts. 21 000 and 23 000, whereas surface labelled cells gave a prominent band of mol. wt. 19 000, a major band of 21 000 and a weaker diffuse band of approximately 26 000. As judged from their sensitivity to proteinase-K digestion, all the above polypeptides possess a transmembrane orientation. Digestion with endoglycosidases H and F (endo-H and endo-F), and tunicamycin treatment indicate that all the polypeptides, except that of 19 000 mol. wt. are N-glycosylated. The 21 000 and 23 000 mol. wt. chains possess both immature and mature oligosaccharide units, whereas the 26 000 mol. wt. band apparently has mature units only. Pulse chase experiments combined with digestion by endo-F and endo-H suggest that the N-glycosylated polypeptides are derived from two polypeptides of mol. wts. 14 000 and 16 000. It is concluded that the T3 antigen is derived from three different non-glycosylated polypeptides two of which are subsequently N-glycosylated to give the 21 000, 23 000 and 26 000 forms. The cell surface T3 antigen most probably comprises at least two distinct, non-covalently associated polypeptides, but the number and types of polypeptides giving rise to the whole molecule and whether different complexes exist is at present unclear.  相似文献   

6.
Cytokeratin polypeptides of human epidermis, of epithelia microdissected from various zones of the pilosebaceous tract (outer root-sheath of hair follicle, sebaceous gland), and of eccrine sweat-glands have been separated by one- and two-dimensional gel electrophoresis and characterized by binding of cytokeratin antibodies and by peptide mapping. The epithelium of the pilosebaceous tract has three major keratin polypeptides in common with interfollicular epidermis (two basic components of mol wts 58,000 and 56,000 and one acidic polypeptide of mol wt 50,000); however, it lacks basic keratin polypeptides in the mol wt range of 64,000-68,000 and two acidic keratin-polypeptides of mol wts 56,000 and 56,500 and contains an additional characteristic acidic cytokeratin of mol wt 46,000. Another cytokeratin polypeptide of mol wt 48,000 that is prominent in hair-follicle epithelium is also found in nonfollicular epidermis of foot sole. Both epidermis and pilosebaceous tract are different from eccrine sweat-gland epithelium, which also contains two major cytokeratins of mol wts 52,500 and 54,000 (isoelectric at pH 5.8-6.1) and a more acidic cytokeratin of mol wt 40,000. A striking similarity between the cytokeratins of human basal-cell epitheliomas and those of the pilosebaceous tract has been found: all three major cytokeratins (mol wts 58,000; 50,000; 46,000) of the tumor cells are also expressed in hair-follicle epithelium. The cytokeratin of mol wt 46,000, which is the most prominent acidic cytokeratin in this tumor, is related, by immunological and peptide map criteria, to the acidic keratin-polypeptides of mol wts 48,000 and 50,000, but represents a distinct keratin that is also found in other human tumor cells such as in solid adamantinomas and in cultured HeLa cells. The results show that the various epithelia present in skin, albeit in physical and ontogenic continuity, can be distinguished by their specific cytokeratin-polypeptide patterns and that the cytoskeleton of basal-cell epitheliomas is related to that of cells of the pilosebaceous tract.  相似文献   

7.
Antibody to the carboxyl-terminal of hexose transporter protein GLUT-1 was used to localize this carrier in normal rat kidney (NRK) cells during D-glucose (Glc) deprivation. Glc-deprivation of NRK cells induces increased hexose transport, inhibits the glycosylation of GLUT-1, and increases the content of both native, 55,000 apparent mol wt (Mr) and aglyco, 38,000 Mr GLUT-1 polypeptides. The distribution of GLUT-1 protein in subcellular fractions isolated from Glc-fed NRK cells shows that the 55,000 Mr polypeptide is most abundant in intracellular membrane fractions. Glc-fed cells that have been tunicamycin treated contain principally the 38,000 Mr GLUT-1 polypeptide, which is found predominantly in intracellular membrane fractions. In Glc-deprived cells the 55,000 Mr GLUT-1 polypeptide localizes predominantly in the Golgi and plasma membrane fractions, whereas the more abundant 38,000 Mr GLUT-1 polypeptide is distributed throughout all membrane fractions. In Glc-deprived but fructose-fed cells only the 55,000 Mr GLUT-1 polypeptide is detected, and it is found predominantly in the plasma membrane and Golgi fractions. The localization of GLUT-1 protein was directly and specifically visualized in NRK cells by immunofluorescence microscopy. Glc-fed cells show little labeling of cell borders and a small punctate juxtanuclear pattern suggestive of localization to the Golgi and, perhaps, endoplasmic reticulum. Glc-fed cells that have been tunicamycin treated show large punctate intracellular accumulations suggestive of localization to distended Golgi and perhaps endoplasmic reticulum. Glc-deprived cells exhibited intense labeling of cell borders as well as intracellular accumulations. Glc-deprived but fructose-fed cells show fewer intracellular accumulations, and the labeling is, in general, limited to the cell borders. Our results suggest that Glc deprivation induces the selective accumulation of GLUT-1 in the plasma membrane of NRK cells.  相似文献   

8.
The synthesis of the major chloroplast membrane polypeptides has been studied during synchronous growth of Chlamydomonas reinhardtii. Under these conditions, chlorophyll is synthesized during the latter part of the light period and cell division takes place during the dark period. The profile of the chloroplast membrane polypeptides of C. reinhardtii has been well characterized and shown to contain two major classes by size (Hoober, J. 1970. J. Biol. Chem. 245:4327). Polypeptides of group I have a mol wt range of 50,000–55,000 daltons. The second region consists of at least three polypeptide groups, IIa, IIb, and IIc, having mol wt of 40,000, 31,000, and 27,000 daltons, respectively. The synthesis of these polypeptides has been measured using a double-labeling technique and a computer-aided statistical analysis. The rate of labeling of group I polypeptides is highest during the early light period and decreases after 6 h of growth. Group IIa is labeled from the beginning of the light period, but little synthesis of IIb occurs before 3 h, and significant amounts of label are not found in IIc before 5 h of growth. After approximately 8 h of light, groups IIb and IIc are synthesized at rates significantly greater than those of the other membrane polypeptides. The synthesis of the major polypeptide groups ceases in the dark. We conclude that the biosynthesis of the chloroplast membranes is a sequential or stepwise process.  相似文献   

9.
With a procedure that allows the renaturation of the DNA polymerase catalytic activity in situ after SDS-polyacrylamide gel electrophoresis, we have compared the active polypeptides present in extracts from organisms covering a wide evolutionary range from prokaryotes to eukaryotes, namely: Escherichia coli, Oryza sativa, Daucus carota , Neurospora crassa, Dictyostelium discoideum, Saccharomyces cerevisiae, Ceratitis capitata, Leucophaea maderae , Xenopus laevis, rat tissues and human lymphoblastoid cells. Two main clusters of active peptides are visible in mammalian and adult insect tissues, characterized by a mol. wt. greater than 70000 and less than 50000, respectively. High mol. wt. peptides are heterogeneous in size and correspond to active fragments of DNA polymerase alpha, whereas low mol. wt. peptides show the same migration rate as purified DNA polymerase beta and are not generated by proteolysis of the high mol. wt. cluster, In the three species of fungi studied, only high mol. wt. peptides are found. The same is true in plant cells, where no DNA polymerase beta activity is detectable and the pattern of the high mol. wt. cluster is similar to that observed in E. coli extracts (which also lack low mol. wt. peptides). Also in mitochondria from higher and lower eukaryotes only high mol. wt. species are observed, and the active band(s) range from 70000 to 145000 daltons. Our results indicate that the structure of DNA polymerase has been highly conserved during evolution so that an active fragment of mol. wt. greater than or equal to 70 000 is always found in prokaryotic enzymes and in the replicative species of eukaryotic and mitochondrial DNA polymerases; at a certain stage in evolution, another species of low mol. wt. DNA polymerase (beta or beta-like) appears.  相似文献   

10.
Murine monoclonal antibodies were produced which coimmunoprecipitated, under reducing conditions, 130,000- and 55,000-dalton (Da) polypeptides from cells infected with human cytomegalovirus (CMV) strain AD169. A 92,000-Da species, possibly a biosynthetic intermediate, was also detectable. One of the monoclonal antibodies, 15D8, neutralized CMV AD169 only in the presence of guinea pig complement. A second monoclonal antibody, 14E10, coimmunoprecipitated the 130,000- and 55,000-Da polypeptides but did not neutralize viral infectivity. By sequential immunoprecipitation, both monoclonal antibodies have been shown to recognize the same polypeptides. Monoclonal antibody 15D8 detected the 130,000- and 55,000-Da polypeptides in five of six clinical strains and three laboratory strains tested. The 14E10 monoclonal antibody detected the 130,000-Da protein in four of six CMV clinical isolates and in strain AD169 but did not immunoprecipitate any polypeptides from extracts of cells infected with either Towne or Davis laboratory strains. In kinetic studies, the synthesis of the 130,000-Da polypeptide preceded the appearance of the 55,000-Da polypeptide. In infected cells radiolabeled with a pulse of L-[35S]methionine, the isotope was initially detected in the 130,000-Da polypeptide but could be chased into the 55,000-Da polypeptide. These polypeptides exist in the intracellular and extracellular virus as disulfide-linked multimers. Extracellular virus contained a high-molecular-weight (greater than 200,000 Da) multimer composed entirely of 55,000-Da polypeptides. In extracts from infected cells an additional high-molecular-weight multimer was detected consisting of disulfide-linked 130,000-Da polypeptides.  相似文献   

11.
The role of bile acid-inducible polypeptides in 7-dehydroxylation was investigated in Eubacterium sp. V.P.I. 12708. Cholic acid-inducible bile acid 7 alpha-, 7 beta-dehydroxylase, and delta 6 reductase activities co-eluted from a gel filtration high performance liquid chromatography (HPLC) column. Antibody (Ab) was prepared to these enzymatically active fractions, immunoadsorbed with uninduced cell extract coupled to Sepharose 4B, and used for immunoprecipitation of [35S]-methionine-labeled polypeptides. Ab immunoprecipitated polypeptides with molecular weights of 45,000, 27,000, and 23,500 from induced but not uninduced cell extracts. Immunoinhibition experiments showed that this Ab preparation inhibited (60%) bile acid 7 alpha-dehydroxylase activity in cell extracts. The 45,000 mol wt polypeptide was purified by (NH4)2SO4 fractionation, HPLC gel filtration, and HPLC-DEAE chromatography. Ab prepared to the 45,000 mol wt polypeptide immunoprecipitated only that polypeptide. This Ab, however, did not inhibit bile acid 7 alpha-dehydroxylase activity. Ab specific for the 27,000 mol wt polypeptide was prepared by partial purification and immunoadsorption with uninduced cell extracts. Immunochemical staining, following SDS-PAGE of crude cell extracts, shows a single immunoreactive protein band at 27,000 daltons. This Ab immunoprecipitated the 27,000 mol wt polypeptide as well as small amounts of the 45,000 and 23,000 mol wt polypeptides. Immunoinhibition studies showed that this Ab preparation inhibited (25%) 7 alpha-dehydroxylase activity. These data suggest that the 27,000 mol wt polypeptide is involved in enzyme catalysis. This does not, however, eliminate some role for the 45,000 and 23,500 mol wt polypeptides in bile acid metabolism in this organism.  相似文献   

12.
Epithelial cells contain a class of intermediate-sized filaments formed by proteins related to epidermal alpha-keratins ('cytokeratins'). Different epithelia can express different combinations of cytokeratin polypeptides widely varying in apparent mol. wt. (40 000-68 000) and isoelectric pH (5.0-8.5). We have separated, by two-dimensional gel electrophoresis, cytokeratin polypeptides from various tissues and cultured cells of man, cow, and rodents and examined their relatedness by tryptic peptide mapping. By this method, a subfamily of closely related cytokeratin polypeptides has been identified which comprises the relatively large (greater than or equal to mol. wt. 52 500 in human cells) and basic (pH greater than or equal to 6.0) polypeptides but not the smaller and acidic cytokeratins. In all species examined, the smallest polypeptide of this subfamily is cytokeratin A, which is widespread in many simple epithelia and is the first cytokeratin expressed during embryogenesis. This cytokeratin polypeptide subfamily is represented by at least one member in all epithelial and carcinoma cells examined, indicating that polypeptides of this subfamily serve an important role as tonofilament constitutents . Diverse stratified epithelia and tumours derived therefrom contain two or more polypeptides of this subfamily, and the patterns of expression in different cell types suggest that some polypeptides of this subfamily are specific for certain routes of epithelial differentiation.  相似文献   

13.
1. Gap (communicating) junctions are plasma-membrane specializations of characteristic morphology that form transmembrane channels allowing direct communication between cells. Their preparation is described starting from mouse liver plasma membranes and the constituent polypeptides are deduced. 2. Gap junctions co-purify with collagen fibres when the plasma-membrane residues insoluble in N-dodecyl sarcosinate are fractionated on sucrose gradients. Sucrose-density perturbation by relipidation of isolated gap junctions or the use of urea to remove non-junctional membranes both failed to diminish the collagen content of fractions. 3. Removal of collagen by treatment with purified collagenase preparations yielded morphologically satisfactory gap-junction fractions. Analysis by polyacrylamide-gel electrophoresis of the polypeptides present in gap junctions prepared by procedures omitting or using collagenases indicated two non-glycosylated polypeptides, a major component of apparent mol.wt. 38000 and a minor 40000-mol.wt. component. These two polypeptides were also present in plasma membranes and the intermediate fractions. 4. Proteolysis of the gap-junction polypeptides yielding components of mol.wt. 34000, 25000 and below 20000 occurred when iodinated gap junctions were subject to prolonged collagenase treatment, thus explaining the variable polypeptide composition of gap junctions reported by others. 5. The morphological properties of the isolated gap junctions prepared by the various procedures are described.  相似文献   

14.
1. Ecdysis of infective Haemonchus contortus larvae is effected by the enzymatic degradation of a specialized region of the second molt cuticle containing a biochemically unique polypeptide (mol. wt = 160,000). 2. The 160,000 mol. wt polypeptide and related polypeptides are synthesized at approximately 6 days of larval development. Antigenically similar polypeptides occur in other ruminant trichostrongyles. 3. Cuticle polypeptides digested during ecdysis differ from second molt cuticle collagens in amino acid composition and collagenase sensitivity. However, some antigenic homology between the 160,000 mol. wt polypeptide and cuticle collagens suggests structurally similar regions.  相似文献   

15.
Maturation of the head of bacteriophage T4. I. DNA packaging events   总被引:480,自引:0,他引:480  
Pulse-chase experiments in wild-type and mutant phage-infected cells provide evidence that the following particles called prohead I, II and III are successive precursors to the mature heads. The prohead I particles contain predominantly the precursor protein P23 and possibly P22 (mol. wt 31,000) and IP III (mol. wt 24,000) and have an s value of about 400 S. Concomitantly with the cleavage of most of P23 (mol. wt 55,000) to P231 (mol. wt 45,000), they are rapidly converted into prohead II particles which sediment with about 350 S. The prohead II particles contain, in addition to P231, the major constituents of the viral shella—a core consisting of proteins P22 and IP III. In cell lysates, prohead I and prohead II particles contain no DNA in a DNase-resistant form and are not bound to the replicative DNA. We cannot, however, positively rule out the possibility that these particles may have contained some DNA while in the cells.The prohead II particles are in turn converted into particles which sediment with about 550 S after DNase treatment (prohead III). During this conversion about 50% of normal DNA complement becomes packaged in a DNase-resistant form, and roughly 50% of the core proteins P22 and IP III are cleaved. In lysates the prohead III particles are attached to the replicative DNA. The prohead III particle appears to be the immediate precursor of the full mature head (1100 S). Cleavage of protein P22 to small polypeptides and conversion of IP III IP III1 are completed at this time. No precursor proteins are found in the full heads. Studies with various mutant phage showed that the prohead II to III conversion is blocked by mutations in genes 16 and 17 and that the conversion of the prohead III particles to the mature heads is blocked by mutations in gene 49. Cleavage of the head proteins, however, occurs normally in these mutant-infected cells. We conclude that the cleavage of the major component of the viral shell, P23, into P231 precedes the DNA packaging event, whereas cleavage of the core proteins P22 and IP III appears to be intimately linked to the DNA packaging event. Models relating the cleavage processes to DNA encapsulation are discussed.  相似文献   

16.
The proteins of rat liver cytoplasm, nuclear washes, matrix, membrane, heterogeneous nuclear (hn)RNA proteins and chromatin were examined by two-dimensional gel electrophoresis. The inclusion in the gels of six common protein standards of carefully selected molecular weight and isoelectric point allowed us to clearly follow the distribution of specific proteins during nuclear extraction. In the nuclear washes and chromatin, we observed five classes of proteins: (a) Exclusively cytoplasmic proteins, present in the first saline-EDTA wash but rapidly disappearing from subsequent washes; (b) ubiquitous proteins of 75,000, 68,000, 57,000, and 43,000 mol wt, the latter being actin, found in the cytoplasm, all nuclear washes and the final chromatin pellet; (c) proteins of 94,000, 25,000, and 20,500 mol wt specific to the nuclear washes; (d) proteins present in the nuclear washes and final chromatin, represented by species at 62,000, 55,000, 54,000, and 48,000 mol wt, primarily derived from the nuclear matrix; and (e) two proteins of 68,000 mol wt present only in the final chromatin. The major 65,000- 75,000-mol wt proteins seen by one-dimensional gel electrophoresis of nuclear matrix were very heterogeneous and contained a major acidic, an intermediate, and a basic group. A single 68,000-mol wt polypeptide constituted the majority of the membrane-lamina fraction, consistent with immunological studies indicating that a distinct subset of matrix proteins occurs, associated with heterochromatin, at the periphery of the nucleus. Actin was the second major nuclear membrane-lamina protein. Two polypeptides at 36,000 and 34,000 mol wt constituted 60% of the hnRNP. Approximately 80% of the mass of the nonhistone chromosomal proteins (NHP) from unwashed nuclei is contributed by nuclear matrix and hnRNPs, and essentially the same patterns were seen with chromatin NHP. The concept of NHP being a distinct set of DNA- bound proteins is unnecessarily limiting. Many are derived from the nuclear matrix or hnRNp particles and vary in the degree to which they share different intracellular compartments.  相似文献   

17.
Summary Approximately 250 phytohemagglutinin (PHA)-stimulated peripheral blood lymphocyte polypeptides from three unrelated healthy males were compared by high-resolution two-dimensional gel electrophoresis and double-label autoradiography. Comparisons by all possible pairwise combinations of [14C]leucine-labeled proteins from an individual and [3H]leucine-labeled proteins from another revealed that only three polypeptides differed qualitatively among the three individuals. The degree of variation in lymphocyte polypeptides between different individuals was similar to that in fibroblast polypeptides reported previously. Among the three variant polypeptides, two polypeptides with mol.wt. 64,000 and mol. wt. 37,000 coexisted with a polypeptide with the same molecular weight, and they showed the behavior expected of two allelic gene products separated in the isoelectric focusing dimension by charge differences. Analysis of [14C]leucine labeled peripheral blood lymphocyte proteints, from the parents of each individual, by two-dimensional gel electrophoresis indicated that the variant polypeptides with mol. wt. 64,000 and mol. wt. 37,000 in the propositus were inherited from one of his parents. The data indicate that genetic analysis of PHA-stimulated peripheral blood lymphocyte proteins is feasible by high-resolution two-dimensional gel electrophoresis in combination with double-label autoradiography and pedigree analysis.  相似文献   

18.
Sindbis virus-specific polypeptides were synthesized in lysates of rabbit reticulocytes in response to added 26 S or 49 S RNA. Sindbis 26 S RNA was translated into as many as three polypeptides which co-migrate in acrylamide gels with proteins found in infected cells.Wild type 26 S RNA was translated primarily into two polypeptides, which appear to be the Sindbis nucleocapsid protein (mol. wt 30,000) and the precursor of the two glycoproteins of the virion (mol. wt 100,000). A larger polypeptide (mol. wt 130,000) was synthesized in response to ts2 26 S RNA, a species of RNA which was isolated from cells infected with the ts2 mutant of Sindbis virus. This large polypeptide is apparently the protein which accumulates in cells infected with the mutant virus and which is thought to be a precursor of all three viral structural proteins.These results support the hypothesis that 26 S RNA is the messenger for the three structural proteins of the virion and that the RNA codes for one large polypeptide precursor. The precursor may then be cleaved at a specific site to yield the nucleocapsid protein and a second polypeptide which, in infected cells, is cleaved in a series of steps to yield the two glycoproteins of the virion.Sindbis 49 S RNA was translated into eight or nine polypeptides ranging from 60,000 to 180,000 molecular weights. The viral structural proteins, as such, were not synthesized in response to the added 49 S RNA.  相似文献   

19.
The DNA sequence of a clone from a cDNA library made from Xenopus laevis skin is described. This sequence represents the 3'-terminal end of an mRNA which codes for an epidermal cytokeratin polypeptide of mol. wt. 51 000 of the acidic (type I) subfamily as identified by hybridization-selection of mRNAs, followed by gel electrophoretic identification of the polypeptides synthesized by translation in vitro. The partial amino acid sequence of the amphibian cytokeratin shows strong similarity to type I cytoskeletal keratins from human (mol. wt. 50 000) and murine (mol. wt. 59 000) epidermis. In the non alpha-helical tail region the human and the non-mammalian (Xenopus) keratins are more similar to each other than to the murine protein, indicating that the former are equivalent cytokeratin polypeptides and belonging to a special subclass of type I keratin polypeptides devoid of glycine-rich regions in the carboxy-terminal portion. The evolutionary conservativity of the genes coding for cytokeratins is discussed.  相似文献   

20.
Rat liver microsomal glycoproteins were purified by affinity chromatography on concanavalin A Sepharose columns from membrane and content fractions, separated from rough microsomes (RM) treated with low concentrations of deoxycholate (DOC). All periodic acid-Schiff (PAS)-positive glycoproteins of RM showed affinity for concanavalin A Sepharose; even after sodium dodecyl sulfate (SDS) acrylamide gel electrophoresis, most of the microsomal glycoproteins bound [125I]concanavalin A added to the gels, as detected by autoradiography. Two distinct sets of glycoproteins are present in the membrane and content fractions derived from RM. SDS acrylamide gel electrophoresis showed that RM membranes contain 15--20 glycoproteins (15--22% of the total microsomal protein) which range in apparent mol wt from 23,000 to 240,000 daltons. A smaller set of glycoproteins (five to seven polypeptides), with apparent mol wt between 60,000 and 200,000 daltons, was present in the microsomal content fraction. The disposition of the membrane glycoproteins with respect to the membrane plane was determined by selective iodination with the lactoperoxidase (LPO) technique. Intact RM were labeled on their outer face with 131I and, after opening of the vesicles with 0.05% DOC, in both faces with 125I. An analysis of iodination ratios for individual proteins separated electrophoretically showed that in most membrane glycoproteins, tyrosine residues are predominantly exposed on the luminal face of the vesicles, which is the same face on which the carbohydrate moieties are exposed. Several membrane glycoproteins are also exposed on the cytoplasmic surface and therefore have a transmembrane disposition. In this study, ribophorins I and II, two integral membrane proteins (mol wt 65,000 and 63,000) characteristic of RM, were found to be transmembrane glycoproteins. It is suggested that the transmembrane disposition of the ribophorins may be related to their possible role in ribosome binding and in the vectorial transfer of nascent polypeptides into the microsomal lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号