首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptomycin and infection of Escherichia coli by T6r+ bacteriophage   总被引:4,自引:1,他引:3  
Freda, Celia E. (University of Pennsylvania School of Medicine, Philadelphia), and Seymour S. Cohen. Streptomycin and infection of Escherichia coli by T6r(+) bacteriophage. J. Bacteriol. 92:1670-1679. 1966.-The thymineless, histidineless, uracil-less Escherichia coli 15 THU was shown to be sensitive to streptomycin, dying in patterns comparable to that of strain 15 TAU in the presence or absence of the required amino acid histidine. In the absence of histidine, the antibiotic stimulated ribonucleic acid (RNA) synthesis without a detectable inhibition or stimulation of deoxyribonucleic acid (DNA) synthesis. In the presence of streptomycin (40mug/ml) under conditions of multiple infection with T6r(+), lysis of THU occurred 1 hr earlier than did the control, having produced about one-third as much DNA and phage as did the control. In the absence of histidine, thereby preventing synthesis of phage DNA, accumulation of virus-induced RNA was similar for about 30 min in control and streptomycin-treated systems. In the presence of the antibiotic, however, the infected cells accumulated about 50 to 70% more RNA than did the control after 90 min. Nevertheless, the turnover of RNA was not detectably affected by streptomycin. The rate of production and final amount of deoxycytidylate hydroxymethylase, as well as the cut off time of synthesis of this enzyme, were scarcely affected by streptomycin. The beginning of DNA synthesis was delayed about 3 to 4 min by the antibiotic. The incorporation of histidine in infected cells was unaffected for 10 min and was only about 10% less than the control at 70 min. Lysozyme production began at about 10 min in control and antibiotic-treated systems, continued at essentially similarly increasing rates for 20 min, but stopped abruptly in the streptomycin-treated cells despite continuing protein synthesis. With the exception of lysozyme, the production of phage-specific polymers in a streptomycin-sensitive bacterium was only slightly affected by the antibiotic.  相似文献   

2.
A mutant of Bacillus subtilis 168 (strain 168 KW), defective in its ability to concentrate K(+) from low levels in the growth medium, was used to study the role of K(+) in the development of phage 2C. Both the final burst size and the duration of the rise period depended on the K(+) concentration in the medium. During normal infection (in the presence of K(+)), host deoxyribonucleic acid (DNA) synthesis stopped. The synthesis of host messenger ribonucleic acid (RNA) continued throughout infection, albeit at a steadily decreasing rate. The synthesis of ribosomal RNA and its subsequent incorporation into mature ribosomes also proceeded. In contrast to these findings, host DNA and messenger RNA synthesis were not inhibited in cells infected in the absence of K(+). Only "early" phage messenger RNA was synthesized under these conditions of infection. Phage DNA synthesis was dependent on K(+) irrespective of the requirement for this cation in protein synthesis.  相似文献   

3.
The timing of "early" and "late" protein synthesis in Escherichia coli infected with T-even bacteriophage was studied with a temperature-sensitive phage mutant, T4 tsL13. This strain was completely unable to direct the synthesis of phage deoxyribonucleic acid (DNA) at 44 C because it makes a deoxycytidylate hydroxymethylase which cannot act at that temperature. However, the mutant did multiply normally at 30 C. No detectable formation of the late protein, lysozyme, occurred at 44 C, in agreement with the idea, proposed by several workers, that DNA replication is necessary for activation of late genetic functions. However, the formation of an early enzyme, thymidylate synthetase, was shut off at about 10 min, as in normal infection. This implied that separate mechanisms were responsible for cessation of early functions and activation of late ones. That the infected cell at 44 C retained the capacity for synthesis of early enzymes was shown by the fact that DNA synthesis occurred after a culture was transferred from 44 to 30 C as late as 30 min after infection. This synthesis was inhibited by chloramphenicol, indicating that de novo synthesis of an early enzyme can take place at a late period in development. It is suggested that cells infected under normal conditions maintained an appreciable rate of early enzyme synthesis throughout the course of infection.  相似文献   

4.
Regulation of Bacteriophage T5 Development by ColI Factors   总被引:14,自引:10,他引:4  
The I-type colicinogenic factor ColIb transforms Escherichia coli from a permissive to a nonpermissive host for bacteriophage T5 reproduction by preventing complete expression of the phage genome. T5-infected ColIb(+) cells synthesize only class I (early) phage protein and ribonucleic acid (RNA). Neither phage-specific class II proteins [associated with viral deoxyribonucleic acid (DNA) replication] nor class III proteins (phage structural components) are formed due to the failure of the infected ColIb(+) cells to synthesize class II or class III phage-specific messenger RNA. Comparable studies with T5-infected cells colicinogenic for the related ColIa factor revealed no decrease in the yield of progeny phage although the presence of the ColIa factor leads to a significant reduction in the amount of phage-directed class III protein synthesis.  相似文献   

5.
The nucleoids of Escherichia coli S/6/5 cells are rapidly unfolded at about 3 min after infection with wild-type T4 bacteriophage or with nuclear disruption deficient, host DNA degradation-deficient multiple mutants of phage T4. Unfolding does not occur after infection with T4 phage ghosts. Experiments using chloramphenicol to inhibit protein synthesis indicate that the T4-induced unfolding of the E. coli chromosomes is dependent on the presence of one or more protein synthesized between 2 and 3 min after infection. A mutant of phage T4 has been isolated which fails to induce this early unfolding of the host nucleoids. This mutant has been termed "unfoldase deficient" (unf-) despite the fact that the function of the gene product defective in this strain is not yet known. Mapping experiments indicate that the unf- mutation is located near gene 63 between genes 31 and 63. The folded genomes of E. coli S/6/5 cells remain essentially intact (2,000-3,000S) at 5 min after infection with unfoldase-, nuclear disruption-, and host DNA degradation-deficient T4 phage. Nuclear disruption occurs normally after infection with unfoldase- and host DNA degradation-deficient but nuclear disruption-proficient (ndd+), T4 phage. The host chromosomes remain partially folded (1,200-1,800S) at 5 min after infection with the unfoldase single mutant unf39 x 5 or an unfoldase- and host DNA degradation-deficient, but nuclear disruption-proficient, T4 strain. The presence of the unfoldase mutation causes a slight delay in host DNA degradation in the presence of nuclear disruption but has no effect on the rate of host DNA degradation in the absence of nuclear disruption. Its presence in nuclear disruption- and host DNA degradation-deficient multiple mutants does not alter the shutoff to host DNA or protein synthesis.  相似文献   

6.
Development of Coliphage T5: Ultrastructural and Biochemical Studies   总被引:10,自引:5,他引:5       下载免费PDF全文
Electron microscopic studies of Escherichia coli infected with bacteriophage T5(+) have revealed that host nuclear material disappeared before 9 min after infection. This disappearance seemed to correspond to the breakdown of host deoxyribonucleic acid (DNA) into acid-soluble fragments. Little or no host DNA thymidine was reincorporated into phage DNA, except in the presence of 5-fluorodeoxyuridine (FUdR). Progeny virus particles were observed in the cytoplasm 20 min postinfection. Most of these particles were in the form of hexagonal-shaped heads or capsids, which were filled with electron-dense material (presumably T5 DNA). A small percentage (3 to 4%) of the phage heads appeared empty. On rare occasions, crystalline arrays of empty heads were observed. Nalidixic acid, hydroxyurea, and FUdR substantially inhibited replication of T5 DNA. However, these agents did not prevent virus-induced degradation of E. coli DNA. Most of the phage-specified structures seen in T5(+)-infected cells treated with FUdR or with nalidixic were in the form of empty capsids. Infected cells treated with hydroxyurea did not contain empty capsids. When E. coli F was infected with the DO mutant T5 amH18a (restrictive conditions), there was a small amount of DNA synthesis. Such cells contained only empty capsids, but their numbers were few in comparison to those in cells infected under permissive conditions or infected with T5(+). The cells also failed to lyse. These results confirm other reports which suggest that DNA replication is not required for the synthesis of late proteins. The data also indicate that DNA replication influences the quantity of viral structures being produced.  相似文献   

7.
The requirement for phage protein synthesis for the inhibition of host deoxyribonucleic acid synthesis has been investigated by using a phage mutant unable to catalyze the production of any phage deoxyribonucleic acid. It has been concluded that the major pathway whereby phage inhibit host syntheses requires protein synthesis. The inhibition of host syntheses by phage ghosts is not affected by inhibitors of protein synthesis.  相似文献   

8.
A general procedure is described for isolation of T-even phage-tolerant mutants of Escherichia coli. Two such mutants of E. coli B have been examined in some detail. These mutants adsorb T-even phages but are unable to release viable progeny. Under certain conditions, viability of the cells is completely unaffected by phage infection in one mutant, and there is but a slight decrease in colony-forming ability in the other. Phage deoxyribonucleic acid (DNA) is injected into these cells, as shown by the formation of phage-specific enzymes, but it is not degraded to acid-soluble material. Some phage DNA replication occurs in both strains. The mutants are both more resistant to ultraviolet light than is the parent strain.  相似文献   

9.
Differential Effect of Polyamines on T4 Morphogenesis   总被引:4,自引:4,他引:0       下载免费PDF全文
The 5-fluorouracil (5 FU) technique for the phenotypic reversion of amber mutants was used to demonstrate that under certain circumstances, in the presence of putrescine or spermidine, early mutants have an enhanced response to 5 FU, whereas late mutants have a delayed response. Bacteria infected by T4D wild-type bacteriophage did not produce phage in the presence of high putrescine concentrations. Pulse treatments with putrescine showed that the production of lysozyme depends on a putrescine-sensitive process that begins immediately after infection at 26 C and ends at 36 min or even later. The addition of putrescine at any time during the critical period between 0 and 36 min led to a corresponding delay in lysozyme synthesis after the inhibitor was removed. Intracellular phage maturation was delayed by the addition of 100 mumoles of putrescine per ml. Early enzymes were not affected by the diamine, but the level of phage deoxyribonucleic acid was considerably decreased by the inhibitor. The putrescine-sensitive process that affects the timing of maturation is suggested to be the natural process controlling the T4 "clock."  相似文献   

10.
To establish a method for transmission of genetic materials in the genus Streptomyces, the conditions of infection of protoplasts of S. kanamyceticus by actinophage PK-66 deoxyribonucleic acid (DNA) were studied. The protoplasts of Streptomyces were prepared by treatments with lysozyme and trypsin. The infectivity of the phage DNA was enhanced by the presence of NaCl in the medium. The optimal concentration of the protoplasts for infection with DNA was 7 x 10(7) to 4 x 10(8)/ml. A proportional relationship was found between the infectivity and the DNA concentration within a certain range. The maximal production of mature phage was achieved after 19 hr of incubation. The number of phage propagated in the infection mixture reached 10(4) plaque-forming units per ml under the appropriate conditions. The phage DNA infected not only protoplasts prepared from S. kanamyceticus but also those prepared from S. violaceoniger and S. acidomyceticus, which were resistant to intact phage PK-66.  相似文献   

11.
The morphology of the intracellular development of bacteriophage phi25 in Bacillus subtilis 168M has been correlated with nucleic acid synthesis in infected cells. Host deoxyribonucleic acid (DNA) synthesis was shut off by a phage-induced enzyme within 5 min after infection, and another phage-mediated function extensively degraded host DNA at the time of cell lysis. Synthesis of phage DNA in infected cells began within 5 min and continued until late in the rise period. After phage DNA synthesis and coinciding with lysis, much of the unpackaged, newly synthesized phage DNA was degraded. Studies of thin sections of phi25 infected cells suggested that unfilled capsids may be precursors to filled capsids in the packaging process. To assess dependence of capsid formation on phage DNA replication, cells were either treated with mitomycin C and infected with normal phage or infected with ultraviolet-irradiated (99% killed) phi25. Only empty capsids were found in these cells, indicating that capsid production may be independent of the presence of newly synthesized viral DNA.  相似文献   

12.
Actinomycin D caused the irreversible loss of PBS1 phage infectious centers and PBS1-mediated transductants. The loss of infectious centers occurred only within the first 4 min after the addition of phage to cells. Actinomycin did not inactivate free phage or inhibit phage adsorption. Electron micrographs indicated that phage adsorbed to cells in the presence of actinomycin ejected their deoxyribonucleic acid (DNA) normally. However, when cells were infected in the presence of actinomycin, 15 to 22% of their (32)P-labeled DNA appeared in the medium, whereas only 1.5 to 7.2% of the (32)P-labeled DNA appeared in the medium during normal infection. Neither 8-azaguanine nor chloramphenicol caused a similar loss of PBS1 infectious centers or transductants. Actinomycin also caused the loss of SP10 infectious centers but it had no effect on SP01 or phi29 infections. We conclude that actinomycin causes abortion of PBS1 infection by inhibiting the uptake or retention of phage DNA into host cells. The immunity of SP01 and phi29 infections to actinomycin probably reflects differences in the penetration mechanisms of these phages.  相似文献   

13.
To determine whether polyamine synthesis is dependent on deoxyribonucleic acid (DNA) synthesis, polyamine levels were estimated after infection of bacterial cells with ultraviolet-irradiated T4 or T4 am N 122, a DNA-negative mutant. Although phage DNA accumulation was restricted to various degrees in comparison to cells infected with T4D, nearly commensurate levels of putrescine and spermidine synthesis were observed after infection, regardless of the rate of phage DNA synthesis. We conclude from these data that polyamine synthesis after infection is independent of phage DNA synthesis.  相似文献   

14.
Phage phi29 deoxyribonucleic acid (DNA) replicated under conditions where semiconservative DNA production in Bacillus subtilis host cells was blocked with 6-(p-hydroxyphenylazo)-uracil (HPUra). The time of initiation of phi29 DNA replication was not affected by HPUra, and normal quantities of viable phage were produced in the presence of the inhibitor. Studies with conditional lethal mutants of phage phi29 demonstrated the usefulness of HPUra for detection of viral-specific DNA production.  相似文献   

15.
Sequential Protein Synthesis Following Vaccinia Virus Infection   总被引:41,自引:31,他引:10       下载免费PDF全文
Inhibition of HeLa cell protein synthesis and the sequential synthesis of viral proteins were followed by pulse-labeling infected cells with (14)C-phenylalanine. Proteins were resolved by polyacrylamide gel electrophoresis. The viral origin of native proteins was confirmed by immunodiffusion. The inhibition of host protein synthesis and the synthesis of early viral proteins occur 1 to 3 hr after infection. This early sequence of events also occurs in the presence of 5-fluorodeoxyuridine, an inhibitor of deoxyribonucleic acid synthesis. Other viral proteins are synthesized at a later time. Those proteins which are not made in the absence of viral deoxyribonucleic acid synthesis can be further subdivided into intermediate and late classes. The intermediate protein is synthesized before the late proteins but does not appear to be a precursor of them. Many more viral polypeptides were resolved by polyacrylamide gel electrophoresis after solubilization of the entire cytoplasmic fraction with sodium dodecyl sulfate. Virion and nonvirion proteins were identified. Kinetic experiments suggested that certain structural proteins as well as certain nonstructural proteins are made early, whereas others of both classes are made primarily at later times.  相似文献   

16.
Under certain culture conditions, Miracil (35 mug/ml) halts the growth of uninfected Escherichia coli. Cellular ribonucleic acid (RNA) synthesis is almost completely suppressed, whereas deoxyribonucleic acid and protein synthesis are inhibited to a lesser extent. When the drug is added to host bacteria prior to infection with bacteriophage MS2, the phage adsorb to the cells, but penetration of the viral RNA is inhibited. Penetration may be achieved without further viral development by infection in the presence of chloramphenicol. If the bacteria are infected with MS2 in the presence of chloramphenicol, subsequently washed to remove the chloramphenicol, and then treated with Miracil at any time between 0 and 20 min postinfection, a second viral function is inhibited and the yield of progeny phage is reduced. Addition of the drug after 20 min postinfection does not inhibit the infection process. When Miracil is present from early times in infection, only a limited synthesis of both double- and single-stranded virus-specific RNA is observed. The viral RNA species thus produced do not appear to differ from those made in the absence of the drug. A comparison of the activities of the viral RNA synthetase produced during the course of infection in the presence and in the absence of Miracil suggests that a possible cause of the inhibition is the synthesis of an unstable enzyme in the presence of the drug.  相似文献   

17.
Increased deoxyribonucleic acid (DNA) polymerase activity is found in soluble extracts from a polymerase I-negative mutant of Bacillus subtilis after infection with temperate phage SPO2, or after induction of SPO2 prophage in lysogenic derivatives of this mutant. No increased enzyme activity is found after SPO2 infection in the presence of chloramphenicol. Infection of the polymerase-negative mutant with the DNA-negative sus mutant SPO2 L244 gives no increased enzyme activity, whereas infection with DNA-negative sus mutant SPO2 J385 gives enzyme activities comparable to those found in wild-type infected cells. These findings suggest that SPO2 determines a DNA polymerase activity essential for synthesis of phage DNA.  相似文献   

18.
19.
The effect of streptomycin and other aminoglycosides on protein synthesis has been studied using various streptomycin-sensitive strains unable to synthesize polyamines. We have confirmed and extended our previous results showing that the strong inhibition of translation caused by the antibiotic in polyamine-supplemented bacteria was markedly reduced in polyamine-starved cells. The analysis of polypeptides synthesized in the absence and presence of streptomycin in bacteria grown with and without putrescine has shown that the antibiotic provoked the accumulation of low molecular weight peptides partially bound to ribosomes in polyamine-unstarved cells. On the contrary, the drug did not induce major alterations in the patterns of proteins obtained from polyamine-depleted bacteria. The addition of the antibiotic did not evoke any change of proteolytic activity.  相似文献   

20.
Cells colicinogenic for the colicin plasmids E1 or E2 (Col E1 and Col E2, respectively) were selected for a loss of colicin production after infection with bacteriophage Mu. Extrachromosomal deoxyribonucleic acid that was larger than the original colicin plasmids was found in such cells. A small insertion mutant in Col E1 deoxyribonucleic acid affecting active colicin production without affecting either expression of colicin immunity or Col E1 deoxyribonucleic acid replication was found. Cells carrying this Col E1 plasmid mutant do not exhibit the lethal event associated with colicin E1 induction, suggesting that synthesis of active colicin is required for killing during induction. The altered Col E2 plasmid, containing an insertion at least as large as phage Mu, was maintained unstably in the mutants examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号