首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cdc2-cyclin E complexes regulate the G1/S phase transition   总被引:14,自引:0,他引:14  
The cyclin-dependent kinase inhibitor p27(Kip1) is known as a negative regulator of cell-cycle progression and as a tumour suppressor. Cdk2 is the main target of p27 (refs 2, 3) and therefore we hypothesized that loss of Cdk2 activity should modify the p27(-/-) mouse phenotype. Here, we show that although p27(-/-) Cdk2(-/-) mice developed ovary tumours and tumours in the anterior lobe of the pituitary, we failed to detect any functional complementation in p27(-/-) Cdk2(-/-) double-knockout mice, indicating a parallel pathway regulated by p27. We observed elevated levels of S phase and mitosis in tissues of p27(-/-) Cdk2(-/-) mice concomitantly with elevated Cdc2 activity in p27(-/-) Cdk2(-/-) extracts. p27 binds to Cdc2, cyclin B1, cyclin A2, or suc1 complexes in wild-type and Cdk2(-/-) extracts. In addition, cyclin E binds to and activates Cdc2. Our in vivo results provide strong evidence that Cdc2 may compensate the loss of Cdk2 function.  相似文献   

2.
3.
Transformed rat embryo fibroblasts E1A + cHa-ras known to possess high proapoptotic sensitivity and not to be arrested after DNA damage or upon serum starvation, were transfected with bcl-2 gene using calcium-phosphate precipitation method. Triple transformants E1A + cHa-ras + bcl-2 appeared to be protected from damage- and serum depletion-induced apoptosis and to restore cell cycle checkpoint control. Using the method of flow cytometry we have shown that these transformants are arrested in different phases of cell cycle in response to irradiation, adriamycin treatment and serum deprivation. Overexpression of bcl-2 in E1A + cHa-ras-transformed cells entirely suppresses adriamycin-induced apoptosis and significantly reduces the level of apoptosis triggered by irradiation and growth factor withdrawal, as we have revealed by the test of clonogenic survival and electrophoretic analysis of oligonucleosomal DNA fragmentation. Our results have demonstrated, for the first time, that the oncogenic Ras co-immunoprecipitates with transfected Bcl-2 in E1A + cHa-ras + bcl-2 transformed cells after irradiation but not after adriamycin treatment. Bcl-2-Ras complexes were also observed in transformants E1A + cHa-ras + bcl-2 after serum starvation. Taken together, these data suggest that Bcl-2 and Ras interaction might play a crucial role in the cell cycle checkpoints restoration and apoptotic events regulation in transformants E1A + cHa-ras + bcl-2 exposed to DNA-damaging factors or growth factor-deprived.  相似文献   

4.
5.
Feulgen stained nuclei of PHA-stimulated human blood lymphocytes were used for cytophotometric chromatin pattern analysis. Similar distributions of low optical density values indicating the predominance of diffuse chromatin were obtained for G1, S and G2 cells. Condensed chromatin was predominant in G0 and M nuclei. Integral versus average optical densities scatter plots analyses permitted one to distinguish cells undergoing different phases of cell cycle including G0 and G1.  相似文献   

6.
Human Mcm proteins at a replication origin during the G1 to S phase transition   总被引:11,自引:1,他引:10  
Previous work with yeast cells and with Xenopus egg extracts had shown that eukaryotic pre-replication complexes assemble on chromatin in a step-wise manner whereby specific loading factors promote the recruitment of essential Mcm proteins at pre-bound origin recognition complexes (ORC with proteins Orc1p–Orc6p). While the order of assembly—Mcm binding follows ORC binding—seems to be conserved in cycling mammalian cells in culture, it has not been determined whether mammalian Mcm proteins associate with ORC-bearing chromatin sites. We have used a chromatin immunoprecipitation approach to investigate the site of Mcm binding in a genomic region that has previously been shown to contain an ORC-binding site and an origin of replication. Using chromatin from HeLa cells in G1 phase, antibodies against Orc2p as well as antibodies against Mcm proteins specifically immunoprecipitate chromatin enriched for a DNA region that includes a replication origin. However, with chromatin from cells in S phase, only Orc2p-specific antibodies immunoprecipitate the origin-containing DNA region while Mcm-specific antibodies immunoprecipitate chromatin with DNA from all parts of the genomic region investigated. Thus, human Mcm proteins first assemble at or adjacent to bound ORC and move to other sites during genome replication.  相似文献   

7.
Lee HH  Lee SJ  Kim S  Jeong S  Na M  Lee DM  Cheon YP  Lee KH  Choi I  Chun T 《Biotechnology letters》2012,34(7):1225-1233
Since T cells express diverse sex steroid hormone receptors, they might be a good model to evaluate the effects of sex steroid hormones on immune modulation. Porcine testicular extract contains several sex steroid hormones and may be useful to study the effects of sex steroid hormones during T cell activation. We have examined the effects of the porcine testicular extract on T cell activation: proliferation and secretion of cytokines (IL-2 and IFN-γ) by activated T cells were severely decreased after treatment with porcine testicular extract. The extract produced an immunosuppressive effect and inhibited the proliferation of activated T cells by blocking the cell cycle transition from the G(1) phase to S phase. These effects were mediated by a decrease in the expression of cyclin D1 and cyclin E and constitutive expression of p27(KIP1) after T cell activation.  相似文献   

8.
《Developmental cell》2022,57(5):638-653.e5
  1. Download : Download high-res image (157KB)
  2. Download : Download full-size image
  相似文献   

9.
DNA replication in eukaryotic cells is restricted to the S-phase of the cell cycle. In a cell-free replication model system, using SV40 origin-containing DNA, extracts from G1 cells are inefficient in supporting DNA replication. We have undertaken a detailed analysis of the subcellular localization of replication proteins and cell cycle regulators to determine when these proteins are present in the nucleus and therefore available for DNA replication. Cyclin A and cdk2 have been implicated in regulating DNA replication, and may be responsible for activating components of the DNA replication mitiation complex on entry into S-phase. G1 cell extracts used for in vitro replication contain the replication proteins RPA (the eukaryotic single-stranded DNA binding protein) and DNA polymerase as well as cdk2, but lack cyclin A. On localizing these components in G1 cells we find that both RPA and DNA polymerase are present as nuclear proteins, while cdk2 is primarily cytoplasmic and there is no detectable cyclin A. An apparent change in the distribution of these proteins occurs as the cell enters S-phase. Cyclin A becomes abundant and both cyclin A and cdk2 become localized to the nucleus in S-phase. In contrast, the RPA-34 and RPA-70 subunits of RPA, which are already nuclear, undergo a transition from the uniform nuclear distribution observed during G1, and now display a distinct punctate nuclear pattern. The initiation of DNA replication therefore most likely occurs by modification and activation of these replication initiation proteins rather than by their recruitment to the nuclear compartment.  相似文献   

10.
11.
12.
In adult organisms, a range of proliferative capacities are exhibited by different cell types. Stem cell populations in many tissues readily enter the cell cycle when presented with serum growth factors or other proliferative cues, whereas "terminally" postmitotic cells, such as cardiac myocytes and neurons, fail to do so. Although they rarely show evidence of a proliferative capacity in vivo, there is accumulating evidence to suggest that DNA synthesis can be triggered in postmitotic cells. We now show that cultured adult rat sensory neurons can replicate DNA in response to ectopic expression of E2F1 or E2F2 and that this is augmented by expression of cyclin-dependent kinase activities. We also find that addition of serum and laminin inhibits the E2F-induced S-phase in neurons but not in nonneuronal cells in the same cultures. We conclude that, although terminally differentiated neurons possess the capacity to reinitiate DNA replication in response to G1 regulatory activities, they fail to do so in the presence of signals that do not inhibit S-phase in other cell types in the same cultures. This suggests the existence of cell type-specific inhibitory pathways induced by these signals.  相似文献   

13.
《Molecular cell》2021,81(24):5007-5024.e9
  1. Download : Download high-res image (200KB)
  2. Download : Download full-size image
  相似文献   

14.
S. Hasezawa  T. Sano  T. Nagata 《Protoplasma》1998,202(1-2):105-114
Summary During cell cycle transition from M to G1 phase, micro-tubules (MTs), organized on the perinuclear region, reached the cell cortex. Microfilaments (MFs) were not involved in this process, however, MFs accumulated to form a ring-like structure in the division plane and from there they elongated toward the distal end in the cell cortex. Subsequently, when MTs elongated along the long axis of the cells, towards the distal end, the MTs ran into and then associated with the predeveloped MFs in the cell cortex, suggesting the involvement of MFs in organizing the parallel oriented MTs in the cell cortex. When cortical MTs were formed in the direction transverse to the long axis of cells, the two structures were again closely associated. Therefore, with regards to the determination of the direction of organizing MTs, predeveloped MFs may have guided the orientation of MTs at the initial stage. Disorganization of MFs in this period, by cytochalasins, prevented the organization of cortical MTs, and resulted in the appearance of abnormal MT configurations. We thus demonstrate the involvement of MFs in determining the orientation and organization of cortical MTs, and discuss the possible role of MFs during this process.Abbreviations CB cytochalasin B - CD cytochalasin D - CLSM confocal laser scanning microscopy - DAPI 4,6-diamidino-2-phenylindole - EF-1 elongation factor 1 - MF microfilament - MT microtubule  相似文献   

15.
Cdc14 belongs to a dual-specificity phosphatase family highly conserved through evolution that preferentially reverses CDK (Cyclin dependent kinases) –dependent phosphorylation events. In the yeast Saccharomyces cerevisiae, Cdc14 is an essential regulator of late mitotic events and exit from mitosis by counteracting CDK activity at the end of mitosis. However, many studies have shown that Cdc14 is dispensable for exiting mitosis in all other model systems analyzed. In fission yeast, the Cdc14 homologue Flp1/Clp1 regulates the stability of the mitotic inducer Cdc25 at the end of mitosis to ensure Cdk1 inactivation before cytokinesis. We have recently reported that human Cdc14A, the Cdc14 isoform located at the centrosomes during interphase, down-regulates Cdc25 activity at the G2/M transition to prevent premature activation of Cdk1-Cyclin B1 complexes and untimely entry into mitosis. Here we speculate about new molecular mechanisms for Cdc14A and discuss the current evidence suggesting that Cdc14 phosphatase plays a role in cell cycle control in higher eukaryotes.  相似文献   

16.
We report here for the first time that germanium oxide (GeO(2)) blocks cell progression. GeO(2) is not genotoxic to Chinese hamster ovary (CHO) cells and has limited cytotoxicity. However, GeO(2) arrests cells at G2/M phase. The proportion of cells stopped at G2/M phase increased dose-dependently up to 5 mM GeO(2) when treated for 12 h, but decreased at GeO(2) concentration was greater than 5 mM. Analysis of 5-bromodeoxyuridine-labeled cells indicated that GeO(2) delayed S phase progression in a dose-dependent manner, and blocked cells at G2/M phase. Microscopic examination confirmed that GeO(2) treatment arrested cells at G2 phase. Similar to several other events that cause G2 block, the GeO(2)-induced G2 block can also be ameliorated by caffeine in a dose- and time-dependent manner. To explore the mechanism of G2 arrest by GeO(2), cyclin content and cyclin-dependent kinase activity were examined. Cyclin B1 level was not affected after GeO(2) treatment in CHO cells. However, GeO(2) decreased p34(cdc2) kinase (Cdk1) activity. The kinase activity recovered within 9 h after GeO(2) removal and correlated with the transition of G2/M-G1 phase of the cells. This result suggests that GeO(2) treatment reduces Cdk1 activity and causing the G2 arrest in CHO cells.  相似文献   

17.
Two controversies have emerged regarding the signaling pathways that regulate Golgi disassembly at the G(2)/M cell cycle transition. The first controversy concerns the role of mitogen-activated protein kinase activator mitogen-activated protein kinase kinase (MEK)1, and the second controversy concerns the participation of Golgi structure in a novel cell cycle "checkpoint." A potential simultaneous resolution is suggested by the hypothesis that MEK1 triggers Golgi unlinking in late G(2) to control G(2)/M kinetics. Here, we show that inhibition of MEK1 by RNA interference or by using the MEK1/2-specific inhibitor U0126 delayed the passage of synchronized HeLa cells into M phase. The MEK1 requirement for normal mitotic entry was abrogated if Golgi proteins were dispersed before M phase by treatment of cells with brefeldin A or if GRASP65, which links Golgi stacks into a ribbon network, was depleted. Imaging revealed that unlinking of the Golgi apparatus begins before M phase, is independent of cyclin-dependent kinase 1 activation, and requires MEK signaling. Furthermore, expression of the GRASP family member GRASP55 after alanine substitution of its MEK1-dependent mitotic phosphorylation sites inhibited both late G(2) Golgi unlinking and the G(2)/M transition. Thus, MEK1 plays an in vivo role in Golgi reorganization, which regulates cell cycle progression.  相似文献   

18.
19.
The implication of histone H1 kinase activity for the G2/M transition during the cell cycle was investigated usingDictyostelium discoideum Ax-2. Histone H1 kinase with its activity was purified from cell extracts by the use of p13suc1 affinity gel. In the vegetative cell cycle, the activity of histone H1 kinase including Cdc2 kinase was found using synchronized Ax-2 cells to be highest just before the entry into mitosis. The activity also was markedly enhanced just prior to the M phase from which developing cells (possibly prespore cells) reinitiate their cell cycle at the mound-tipped aggregate stage. These results strongly suggest the importance of Cdc2 kinase activity in the G2 to M phase transition during the cell cycle, as the case for other eukaryotic cells.  相似文献   

20.
The APC gene is mutated in familial adenomatous polyposis (FAP) as well as in sporadic colorectal tumours. The product of the APC gene is a 300 kDa cytoplasmic protein associated with the adherence junction protein catenin. Here we show that overexpression of APC blocks serum-induced cell cycle progression from G0/G1 to the S phase. Mutant APCs identified in FAP and/or colorectal tumours were less inhibitory and partially obstructed the activity of the normal APC. The cell-cycle blocking activity of APC was alleviated by the overexpression of cyclin E/CDK2 or cyclin D1/CDK4. Consistent with this result, kinase activity of CDK2 was significantly down-regulated in cells overexpressing APC although its synthesis remained unchanged, while CDK4 activity was barely affected. These results suggest that APC may play a role in the regulation of the cell cycle by negatively modulating the activity of cyclin-CDK complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号