首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The control of vertebrate development is facilitated by cis-regulatory sequences hardwired into the genome. Given that many developmental processes are strikingly similar across all backboned animals, it is reasonable to expect these sequences to be conserved at the nucleotide level, their potential for mutation being constrained by their function. Comparison between the genomes of highly divergent organisms allows such sequences to be identified and some of the most successful approaches have compared regions from the pufferfish, Fugu rubripes, with its distant mammalian relatives, rodents and humans. This review describes progress made in this kind of comparison, from small regions of individual genes, to whole genome alignments.  相似文献   

2.
3.
Migratory pathways of PGCs to the gonad vary depending on the vertebrate species, yet the underlying regulatory mechanisms guiding PGCs are believed to be largely common. In teleost medaka embryo, PGC migration follows two major steps before colonizing in gonadal areas: (1) bilateral lineup in the trunk and (2) posterior drift of PGCs. kazura (kaz) and yanagi (yan) mutants of medaka isolated in mutagenesis screening were defective in the first and second steps, respectively. kazj2-15D was identified as a missense mutation in chemokine receptor gene cxcr4b expressed in PGCs. Embryonic injection of cxcr4b mRNA with vasa 3′ UTR rescued the PGC phenotype of kaz mutant, indicating a cell-autonomous function of cxcr4b in PGCs. yanj6-29C was identified as a nonsense mutation in the cxcr7/rdc1 gene encoding another chemokine receptor. cxcr7 transgene with genomic flanking sequences rescued the yan mutant phenotype efficiently at the G0 generation. cxcr7 was expressed in somites rather than PGCs. cxcr7-expressing somitic domain expanded posteriorly with its margin immediately anterior of posteriorly drifting PGCs, as if PGCs were thrusted toward the gonadal area. kaz and yan mutants are also defective in lateral line positioning, suggesting combined employment of these receptor systems in various cell migratory processes.  相似文献   

4.
The major histocompatibility complex (MHC) class I region of teleosts harbors a tight cluster of the class IA genes and several other genes directly involved in class I antigen presentation. Moreover, the dichotomous haplotypic lineages (termed d- and N- lineages) of the proteasome subunit beta genes, PSMB8 and PSMB10, are present in this region of the medaka, Oryzias latipes. To understand the evolution of the Oryzias MHC class I region at the nucleotide sequence level, we analyzed bacterial artificial chromosome clones covering the MHC class I region containing the d- lineage of Oryzias luzonensis and the d- and N- lineages of Oryzias dancena. Comparison among these three elucidated sequences and the published sequences of the d- and N- lineages of O. latipes indicated that the order and orientation of the encoded genes were completely conserved among these five genomic regions, except for the class IA genes, which showed species-specific variation in copy number. The PSMB8 and PSMB10 genes showed trans-species dimorphism. The remaining regions flanking the PSMB10, PSMB8, and class IA genes showed high degrees of sequence conservation at interspecies as well as intraspecies levels. Thus, the three independent evolutionary patterns under apparently distinctive selective pressures are recognized in the Oryzias MHC class I region. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
To provide a framework for studies to understand the contribution of SALT OVERLY SENSITIVE1 (SOS1) to salt tolerance in Thellungiella halophila, we sequenced and annotated a 193-kb T. halophila BAC containing a putative SOS1 locus (ThSOS1) and compared the sequence to the orthologous 146-kb region of the genome of its salt-sensitive relative, Arabidopsis thaliana. Overall, the two sequences were colinear, but three major expansion/contraction regions in T. halophila were found to contain five Long Terminal Repeat retrotransposons, MuDR DNA transposons and intergenic sequences that contribute to the 47.8-kb size variation in this region of the genome. Twenty-seven genes were annotated in the T. halophila BAC including the putative ThSOS1 locus. ThSOS1 shares gene structure and sequence with A. thaliana SOS1 including 11 predicted transmembrane domains and a cyclic nucleotide-binding domain; however, different patterns of Simple Sequence Repeats were found within a 540-bp region upstream of SOS1 in the two species.  相似文献   

6.
[目的]多重耐药菌株的出现给食品安全带来严重威胁.噬菌体是不同于抗生素的一类重要杀菌因子,对其生物学特性及基因组的研究和分析可为噬菌体的抗菌应用提供依据.[方法]对噬菌体phiP4-7的生物学特性、基因组学、分类学进行研究.[结果]经透射电子显微镜观察,确定phiP4-7头部直径为(50.59±1.68) nm,尾部长...  相似文献   

7.
H9, H10, and H11 are major dominant resistance genes in wheat, expressing antibiosis against Hessian fly [(Hf) Mayetiola destructor (Say)] larvae. Previously, H9 and H10 were assigned to chromosome 5A and H11 to 1A. The objectives of this study were to identify simple-sequence-repeat (SSR) markers for fine mapping of these genes and for marker-assisted selection in wheat breeding. Contrary to previous results, H9 and H10 did not show linkage with SSR markers on chromosome 5A. Instead, H9, H10, and H11 are linked with SSR markers on the short arm of chromosome 1A. Both H9 and H10 are tightly linked to flanking markers Xbarc263 and Xcfa2153 within a genetic distance of 0.3–0.5 cM. H11 is tightly linked to flanking markers Xcfa2153 and Xbarc263 at genetic distances of 0.3 cM and 1.7 cM. Deletion bin mapping assigned these markers and genes to the distal 14% of chromosome arm 1AS, where another Hf-resistance gene, Hdic (derived from emmer wheat), was also mapped previously. Marker polymorphism results indicated that a small terminal segment of chromosome 1AS containing H9 or H10 was transferred from the donor parent to the wheat lines Iris or Joy, and a small intercalary fragment carrying H11 was transferred from the resistant donor to the wheat line Karen. Our results suggest that H9, H10, H11, Hdic, and the previously identified H9- or H11-linked genes (H3, H5, H6, H12, H14, H15, H16, H17, H19, H28, and H29) may compose a cluster (or family) of Hf-resistance genes in the distal gene-rich region of wheat chromosome 1AS; and H10 most likely is the same gene as H9.Mention of commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

8.
Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Recent work has implicated imprinted gene functioning in neurodevelopment and behaviour and defining the expression patterns of these genes in brain tissue has become a key prerequisite to establishing function. In this work we report on the expression patterns of two novel imprinted loci, Nap1l5 and Peg13, in adult mouse brain using in situ hybridisation methods. Nap1l5 and Peg13 are located, respectively, within the introns of the non-imprinted genes Herc3 and the Tularik1 (T1)/KIAA1882 homologue in two separate microimprinted domains on mouse chromosomes 6 and 15. These 'host' genes are highly expressed in brain and consequently we were interested in assessing their expression patterns in parallel to the imprinted genes. The brain expression of all four genes appeared to be mainly neuronal. The detailed expression profiles of Nap1l5 and Peg13 were generally similar with widespread expression that was relatively high in the septal and hypothalamic regions, the hippocampus and the cerebral cortex. In contrast, there was some degree of dissociation between the imprinted genes and their non-imprinted hosts, in that, whilst there was again widespread expression of Herc3 and the T1/KIAA1882 homologue, these genes were also particularly highly expressed in Purkinje neurons and piriform cortex. We also examined expression of the novel imprinted genes in the adrenal glands. Nap1l5 expression was localised mainly to the adrenal medulla, whilst Peg13 expression was observed more generally throughout the adrenal medulla and the outer cortical layers.  相似文献   

10.
Oral-facial-digital type 1 (OFD1) syndrome is an X-linked dominant condition characterized by malformations of the face, oral cavity, and digits. The responsible gene, OFD1, maps to human Xp22 and has an unknown function. We isolated and characterized the mouse Ofd1 gene and showed that it is subject to X-inactivation, in contrast to the human gene. Furthermore, we excluded a role for Ofd1 in the pathogenesis of the spontaneous mouse mutant Xpl, which had been proposed as a mouse model for this condition. Comparative sequence analysis demonstrated that OFD1 is conserved among vertebrates and absent in invertebrates. This analysis allowed the identification of evolutionarily conserved domains in the protein. Finally, we report the identification of 18 apparently nonfunctional OFD1 copies, organized in repeat units on the human Y chromosome. These degenerate OFD1-Y genes probably derived from the ancestral Y homologue of the X-linked gene. The high level of sequence identity among the different units suggests that duplication events have recently occurred during evolution.  相似文献   

11.
The non-MHC-encoded CD1 family has recently emerged as a novel antigen-presenting system that is distinct from MHC class I and class II molecules. In the present study, we determined the genomic structure of that rat CD1, and compared with those of other previously reported CD1 genes. Rat CD1 was extremely similar to mouse CD1 genes, especially to CD1D1. It is of interest that a tyrosine-based motif for endosomal localization, identified in the human CD1b cytoplasmic tail, was conserved in all CD1 molecules except for CD1a, that was encoded by a single short exon. Comparison of the overall exon-intron organization of CD1 genes revealed that the length of the introns was also characteristic to each of the two classes of CD1 genes; classic (CD1A, CD1B, CD1C and CD1E), and CD1D, which have been categorized by comparison of coding regions. These findings support a hypothesis that the two classes have different evolutionary histories. In contrast to the absence of the classic CD1 genes in rats and mice, the entire region of nonpolymorphic CD1D gene has been conserved through mammalian evolution. Furthermore, we determined chromosomal localization of rat CD1 gene using the fluorescence in situ hybridization method with several probes derived from genomic rat CD1 clones. Similar to human and mouse CD1, rat CD1 mapped outside the MHC loci despite the structural and functional resemblance to MHC. Conserved syntheny of chromosomal segments of RNO2 and MMU3 is implied.  相似文献   

12.
13.
The olfactory bulb (OB) of rodents has been suggested to possess a self-sustaining circadian oscillator which functions independent from the master circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. However, neither histology nor physiology of this extra-SCN clock is studied yet. In the present study, we examined circadian variation of major clock gene expressions in the OB and responsiveness to single photic stimuli. Here we show significant circadian variation in the expression of clock genes, Per1, Per2 and Bmal1 in the OB. Per1 and PER2 were mainly expressed in the mitral cell and granular cell layers of the OB. Light responsiveness of Per1 and Per2 expression was different in the OB from that in the parietal cortex. Both Per1 and Per2 are expressed in the OB only by l000 lux light pulse, whereas 100 lux light was enough to induce Per1 mRNA in the parietal cortex. Interestingly, even 1000 lux light failed to induce Per2 mRNA in the parietal cortex. These clock gene-specific and brain region-dependent responses to lights in the OB and parietal cortex suggest that single light stimulus induces various physiological functions in different brain areas via specific clock gene.  相似文献   

14.
Deciphering the expression pattern of K+ channel encoding genes during development can help in the understanding of the establishment of cellular excitability and unravel the molecular mechanisms of neuromuscular diseases. We focused our attention on genes belonging to the erg family, which is deeply involved in the control of neuromuscular excitability in Drosophila flies and possibly other organisms. Both in situ hybridisation and RNase Protection Assay experiments were used to study the expression pattern of mouse (m)erg1, m-erg2 and m-erg3 genes during mouse embryo development, to allow the pattern to be compared with their expression in the adult. M-erg1 is first expressed in the heart and in the central nervous system (CNS) of embryonic day 9.5 (E9.5) embryos; the gene appears in ganglia of the peripheral nervous system (PNS) (dorsal root (DRG) and sympathetic (SCG) ganglia, mioenteric plexus), in the neural layer of retina, skeletal muscles, gonads and gut at E13.5. In the adult m-erg1 is expressed in the heart, various structures of the CNS, DRG and retina. M-erg2 is first expressed at E9.5 in the CNS, thereafter (E13.5) in the neural layer of retina, DRG, SCG, and in the atrium. In the adult the gene is present in some restricted areas of the CNS, retina and DRG. M-erg3 displayed an expression pattern partially overlapping that of m-erg1, with a transitory expression in the developing heart as well. A detailed study of the mouse adult brain showed a peculiar expression pattern of the three genes, sometimes overlapping in different encephalic areas.  相似文献   

15.
The 22q11 deletion syndrome (22q11DS; DiGeorge/velo-cardio-facial syndrome) primarily affects the structures comprising the pharyngeal arches and pouches resulting in arch artery, cardiac, parathyroid, thymus, palatal and craniofacial defects. Tbx1 haploinsufficiency is thought to account for the main structural anomalies observed in the 22q11DS. The Df1 deleted mouse provides a model for 22q11DS, the deletion reflecting Tbx1 haploinsufficiency in the context of the deletion of 21 adjacent genes. We examined the expression of genes in Df1 embryos at embryonic day (E) 10.5, a stage when the arch-artery phenotype is fully penetrant. Our aims were threefold, with our primary aim to identify differentially regulated genes. Second, we asked whether any of the genes hemizygous in Df1 were dosage compensated to wild type levels, and third we investigated whether genes immediately adjacent to the deletion were dysregulated secondary to a position effect. Utilisation of oligonulceotide arrays allowed us to achieve our aims with 9 out of 12 Df1 deleted genes passing the stringent statistical filtering applied. Several genes involved in vasculogenesis and cardiogenesis were validated by real time quantitative PCR (RTQPCR), including Connexin 45, a gene required for normal vascular development, and Dnajb9 a gene implicated in microvascular differentiation. There was no evidence of any dosage compensation of deleted genes, suggesting this phenomenon is rare, and no dysregulation of genes mapping immediately adjacent to the deletion was detected. However Crkl, another gene implicated in the 22q11DS phenotype, was found to be downregulated by microarray and RTQPCR.  相似文献   

16.
We have cloned, sequenced and analysed all the five classes of the intergenic (16S-23S rRNA) spacer region (ISR) associated with the eightrrn operons (rrna-rrnh) ofVibrio cholerae serogroup O1 El Tor strains isolated before, during and after the O139 outbreak. ISR classes ‘a’ and ‘g’ were found to be invariant, ISR-B (ISRb and ISRe) exhibited very little variation, whereas ISR-C (ISRc, ISRd, and ISRf) and ISRh showed the maximum variation. Phylogenetic analysis conducted with all three ISR classes (ISR-B, ISR-C and ISRh) showed that the pre-O139 serogroup and post-O139 serogroup O1 El Tor strains arose out of two independent clones, which was congruent with the observation made by earlier workers suggesting that analyses of ISR-C and ISR-h, instead of all five ISR classes, could be successfully used to study phylogeny in this organism.  相似文献   

17.
The conservation of the linear order (colinearity) of genetic markers along large chromosome segments in wheat and rice is well established, but less is known about the microcolinearity between both genomes at subcentimorgan distances. In this study we focused on the microcolinearity between a 2.6-cM interval flanked by markers Xcdo365 and Xucw65 on wheat chromosome 6B and rice chromosome 2. A previous study has shown that this wheat segment includes the Gpc-6B1 locus, which is responsible for large differences in grain protein content (GPC) and is the target of a positional cloning effort in our laboratories. Twenty-one recombination events between Xcdo365 and Xucw65 were found in a large segregating population (935 gametes) and used to map 17 genes selected from rice chromosome 2 in the wheat genetic map. We found a high level of colinearity between a 2.1-cM region flanked by loci Xucw75 and Xucw67 on wheat chromosome 6B and a 350-kb uninterrupted sequenced region in rice chromosome arm 2S. Colinearity between these two genomes was extended to the region proximal to Xucw67 (eight colinear RFLP markers), but was interrupted distal to Xucw75 (six non-colinear RFLP markers). Analysis of different comparative studies between rice and wheat suggests that microcolinearity is more frequently disrupted in the distal region of the wheat chromosomes. Fortunately, the region encompassing the Gpc-6B1 locus showed an excellent conservation between the two genomes, facilitating the saturation of the target region of the wheat genetic map with molecular markers. These markers were used to map the Gpc-6B1 locus into a 0.3-cM interval flanked by PCR markers Xucw79 and Xucw71, and to identify five candidate genes within the colinear 64-kb region in rice.  相似文献   

18.
熊文斌  卢晗  刘新春 《微生物学通报》2022,49(11):4832-4847
【背景】诺卡氏菌是一种广泛分布的好氧放线菌,可在人体内引起局部或播散性感染,尤其是在免疫功能低下的个体中。诺卡氏菌感染在临床上较难鉴定,而且不断有新型诺卡氏菌种被发现。不同类型、不同地域的诺卡氏菌具有流行差异和抗生素敏感性差异,阻碍了适当治疗方式的选择。利用病灶处的宿主菌分离得到噬菌体来控制诺卡氏菌感染的这种方法在近年来受到了各界的关注。【目的】尝试从环境中分离出能够用于临床治疗的针对诺卡氏菌的烈性噬菌体,并研究其基因组学特征。【方法】利用双层平板法分离得到目标噬菌体,观察其噬菌斑形态,并对噬菌体进行分离纯化,在透射电镜下鉴定其特征。提取噬菌体DNA进行全基因组测序与注释,并与数据库内已知噬菌体基因组进行比较,同时构建系统进化树以进行遗传进化分析。【结果】本文以肉色诺卡氏菌为宿主,从环境样本中分离出一株烈性噬菌体vB_Ncarnea_KYD1,在双层平板上可形成直径<2 mm的透亮均匀的噬菌斑。基因组分析表明,vB_Ncarnea_KYD1DNA为环状,大小为66 621 bp,共发现102个蛋白质编码区(coding sequence,CDS)及一个tRNA-Ser编码序列。透射电镜观察与系统进化树综合分析可以确定,vB_Ncarnea_KYD1为长尾噬菌体科的一个新属。其在进化过程中经历了复杂的基因重组过程。暂未发现毒力因子相关基因与抗性基因,具备实用价值。【结论】从环境水体中分离出一株烈性肉色诺卡氏菌噬菌体vB_Ncarnea_KYD1,通过电镜观察与基因组分析可知,此株噬菌体为长尾噬菌体,基因组中暂未发现不利于临床应用的相关基因,是一株相对安全的烈性诺卡氏菌噬菌体。研究结果丰富了国内噬菌体资源库,并为后续诺卡氏菌感染疾病的治疗提供支持。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号