首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin production in transgenic plants   总被引:9,自引:0,他引:9  
Plants are a major source of vitamins in the human diet. Due to their significance for human health and development, research has been initiated to understand the biosynthesis of vitamins in plants. The pathways that are furthest advanced in elucidation are those of provitamin A, vitamin C and vitamin E. There is little knowledge about the regulation, storage, sink and degradation of any vitamin made in plants, or the interaction of vitamin biosynthetic pathways with other metabolic pathways. Researchers as well as life science companies have endeavoured to manipulate levels of vitamins in order to create functional food with enhanced health benefits, and even with the goal of achieving levels worth extracting from plant tissues. Thus far, metabolic engineering has resulted in transgenic plants that contain elevated levels of provitamin A, vitamin C and E, respectively. Additional research is necessary to identify all relevant target genes in order to further improve and tailor plants with elevated vitamin contents at will.  相似文献   

2.
疫苗生产的新途径——转基因植物   总被引:6,自引:1,他引:6  
王捷  郭勇   《广西植物》1999,19(3):260-262
与发酵生产方式相比,转基因植物疫苗生产技术具有高效、经济和简便等特点。植物表达系统生产外源蛋白一般采用两种方式:(1)编码外源抗原基因与植物基因组稳定整合;(2)利用植物病毒载体,使外源蛋白在植物细胞中瞬时表达。植物系统生产的抗原疫苗可保持自然免疫原性质,口服后能够诱发体液和粘膜免疫反应。  相似文献   

3.
Polyhydroxyalkanoate production in recombinant Escherichia coli.   总被引:3,自引:0,他引:3  
The bacterial species Escherichia coli has proven to be a powerful tool in the molecular analysis of polyhydroxyalkanoate (PHA) biosynthesis. In addition, E. coli holds promise as a source for economical PHA production. Using this microorganism, clones have been developed in our laboratory which direct the synthesis of poly-beta-hydroxybutyrate (PHB) to levels as high as 95% of the cell dry weight. These clones have been further enhanced by the addition of a genetically mediated lysis system that allows the PHB granules to be released gently and efficiently. This paper describes these developments, as well as the use of an E. coli strain to produce the copolymer poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-3HV).  相似文献   

4.
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.  相似文献   

5.
Transformation of Nicotiana tabacum cv. Xanthi leaf sections with the pPCV002-ABC (rol genes A, B and C together under the control of their own promoter) or pPCV002-CaMVC (rol gene C alone under the control of the CaMV 35S promoter) construction present in trans-acting Agrobacterium tumefaciens vectors yielded several transgenic root lines. The two types (rolABC and rolC) of transgenic root lines were examined for their nicotine productivity in relation to growth rate and the amount of rolC gene product measured with specific antibodies. In all cases, the changes in the amount of this polypeptide were positively correlated with the capacity of the transgenic roots to grow and produce nicotine. Both capacities were greatly increased when the rolA, rolB and rolC genes were present together, which demonstrates that the activity of the three rol-gene-encoded functions is synergistic. Consistent observations were also made in the corresponding regenerated plants. Received: 22 February 1997 / Revision received: 22 April 1997 / Accepted: 1 June 1997  相似文献   

6.
Insect-resistant transgenic cabbage plants and their progenies   总被引:3,自引:0,他引:3  
An insecticidal crystal protein gene of Bacillus thuringiensis was transferred into cabbage genome with the method of Agrobacterium infection. Cotyledons with petioles as explants were cocultivated with Agrobacterial suspension. Calli generated at the basis of petiole were subjected to selection on the MS medium containing 15-30 mg/L kanamycin (Km). About 5% explants produced calli growing continuously on the selective medium. Green shoots appeared on these calli when they were transplanted onto medium with Km and 6-BA for plant differentiation. The shoots were separated and cultivated on medium with kanamycin. About 80% shoots were rooted. Non-transformed control calli could not give normal shoots and roots and brownized and died gradually. Larvae of Pieris rapae showed poisonous symptoms: growth inhibition and mortality when fed with the leaf of the transgenic plants. About 80% of regenerated plants showed positive hybridization bands when their DNA were probed with crystal protein sequence of Bacillu  相似文献   

7.
Abstract The bacterial species Escherichia coli has proven to be a powerful tool in the molecular analysis of polyhydroxyalkanoate (PHA) biosynthesis. In addition, E. coli holds promise as a source for economical PHA production. Using this microorganism, clones have been developed in our laboratory which direct the synthesis of poly-β-hydroxybutyrate (PHB) to levels as high as 95% of the cell dry weight. These clones have been further enhanced by the addition of a genetically mediated lysis system that allows the PHB granules to be released gently and efficiently. This paper describes these developments, as well as the use of an E. coli strain to produce the copolymer poly-(3-hydroxybutyrate- co -3-hydroxyvalerate (PHB- co -3-).  相似文献   

8.
9.
Benefits and risks of antibody and vaccine production in transgenic plants   总被引:10,自引:0,他引:10  
Phytopharming, the production of protein biologicals in recombinant plant systems, has shown great promise in studies performed over the past 13 years. A secretory antibody purified from transgenic tobacco was tested successfully in humans, and prevented bacterial re-colonization after topical application in the mouth. Rapid production of patient-tailored anti-lymphoma antibodies in recombinant Tobamovirus-infected tobacco may provide effective cancer therapy. Many different candidate vaccines from bacterial and viral sources have been expressed in transgenic plants, and three human clinical trials with oral delivery of transgenic plant tissues have shown exciting results. The use of crop plants with agricultural practice could allow cheap production of valuable proteins, while providing enhanced safety by avoidance of animal viruses or other contaminants. However development of this technology must carefully consider the means to ensure the separation of food and medicinal products when crop plants are used for phytopharming.  相似文献   

10.
An aluminum borate whiskers-mediated transformation system for calluses of tobacco (Nicotiana tabacum, cv. SR-1) has been developed. A total of 50 small pieces of calluses were vigorously agitated in a liquid medium containing aluminum borate whiskers, pBI221 plasmid carrying the -glucuronidase (GUS) gene, and pBI222 plasmid carrying the hygromycin phosphotransferase (HPT) gene. After treatment, calluses were cultured to select for hygromycin resistance, and three resistant calluses were obtained. Adventitious shoots were produced from each hygromycin-resistant callus and were transferred to rooting medium. A total of three plantlets obtained from each hygromycin-resistant callus were acclimatized and established in soil. Polymerase chain reaction analysis revealed that all the plantlets were cotransformed with both the GUS and HPT genes. Detached leaves of transgenic individuals showed clear hygromycin resistance when cultured in liquid medium. Histochemical assay for GUS revealed that one of these transgenic plants expressed the GUS gene, indicating coexpression of foreign genes.  相似文献   

11.
Transcriptional interference in transgenic plants.   总被引:6,自引:0,他引:6  
  相似文献   

12.
随着转基因植物的大面积种植,转基因植物的生态风险受到广泛关注,其中主要的风险是转基因植物与近缘物种之间的基因流及其影响。本文综述了目前商业化种植的转基因作物油菜、棉花、玉米和大豆,以及未商业化种植的水稻、小麦的基因流研究进展;分析了不同转基因作物与其近缘种之间发生基因流的频率和最远发生距离;介绍了降低基因流发生的方法。基因流频率受物种亲缘关系、花期重叠时间、风速风向等因素的影响,最远发生距离受气候条件、传粉媒介、地理条件等因素的影响。转基因作物与其近缘种之间的基因流频率与距花粉源的距离呈负相关关系(y=-0.59x-0.46,R2=0.25,P<0.01),亲缘关系近的基因流频率高。为了降低转基因植物与其近缘物种之间的基因流风险,建议采取“分区管理”的策略,并加强基因流发生之后的生态风险评价研究。  相似文献   

13.
Agrobacterial transformation is a main method of creation of transgenic plants under laboratory conditions. It is based on regeneration of whole plants from cells transformed with vectors based on T-DNA of agrobacteria. In addition, natural plants are described that contain T-DNA in their genomes and have been vertically transferring it throughout generations over millennia. This DNA was called cellular T-DNA (cT-DNA), and plants containing it are referred to as naturally transgenic ones. Since evolution involves manifold acts of such plant transformation, the latter appears to play important roles. This review analyzes the significance and feasible functions of cT-DNA in the evolution. Roles of cT-DNA in control of plant morphogenetic reactions and in that of processes related to plant-microbe interactions are also discussed.  相似文献   

14.
The stability of antibody and Fab expression was assessed in five different homozygous transgenic Arabidopsis lines. Each of these lines showed silencing of the transgenes that encode the antibody polypeptides, leading to instability of antibody production. However, each line had a different and specific instability profile. The characteristic variation in the level of antibody accumulation in each line as a function of developmental stage indicated that the T-DNA integration pattern played a role in triggering silencing, and also that the history and the integration position of simple transgene loci can influence the susceptibility to epigenetic silencing. In different lines with low antibody accumulation levels, methylation was found either in the promoter alone, in both the promoter and the transcribed region, in the transcribed region only, or in the transcribed region and downstream sequences. In conclusion, our data suggest that epigenetic effects result in different transgene expression profiles in each of the five Arabidopsis lines analyzed. Received: 27 July 1998 / Accepted: 12 October 1998  相似文献   

15.
Use of ri-mediated transformation for production of transgenic plants   总被引:12,自引:0,他引:12  
Summary Agrobacterium rhizogenes-mediated transformation has been used to obtain transgenic plants in 89 different taxa, representing 79 species from 55 genera and 27 families. A diverse range of dicotyledonous plant families is represented, including one Gymnosperm family. In addition to the Ri plasmid, over half these plants have been transformed with foreign genes, including agronomically useful traits. Plants regenerated from hairy roots often show altered plant morphology such as dwarfing, increased rooting, altered flowering, wrinkled leaves and/or increased branching due to rol gene expression. These altered phenotypic features can have potential applications for plant improvement especially in the horticultural industry where such morphological alterations may be desirable. Use of A. rhizogenes and rol gene transformation has tremendous potential for genetic manipulation of plants and has been of particular benefit for improvement of ornamental and woody plants.  相似文献   

16.
Zhang B  Yang YH  Lin YM  Rao Q  Zheng GG  Wu KF 《Biotechnology letters》2003,25(19):1629-1635
The cDNA of human interleukin-18 (hIL-18) was successfully inserted into the genome of tobacco plant, Nicotiana tabacum cv. NC-89, using Agrobacterium tumefaciens-mediated transformation. Insertion and translation of hIL-18 in transformants were confirmed by PCR, ELISA, and Western blot, respectively. The transformed extracts contained the recombinant hIL-18 protein up to 0.05% of total soluble protein. Activity of the recombinant hIL-18 in plant cells was confirmed by the induction of IFN- on IL-18-responsive J6-1 cells by the extracts obtained from the transformants. The expression level of hIL-18 (351 ng g–1 tobacco tissue) obtained in the present study may be sufficient to induce responses/effects in vivo.  相似文献   

17.
转基因植物的表型变异、分子检测与遗传分析   总被引:6,自引:0,他引:6  
本讨论了转化方法、体细胞克隆和选育过程等影响转基因植物表型变异的因素,并对转基因植物不同群体的表型变异组成和效应进行了比较分析,提出了转基因植物分子检测和遗传分析的技术策略。多数情况下,分析转基因植物回交后代(BClF1)比分析T1代能获得更可靠和有价值的结论。  相似文献   

18.
An efficient system for Agrobacterium-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants was developed. Transformation was accomplished by cocultivation of hypocotyl segments with Agrobacterium tumefaciens containing a binary Ti-plasmid vector harboring chimeric neomycin phosphotransferase and β-glucuronidase (GUS) genes. A modified Gamborg's B5 medium used in this study was effective for both callus induction and regeneration of transgenic shoots. This medium could also effectively maintain the organogenic capability of callus for more than a year. Culturing transgenic shoots in Murashige and Skoog medium supplemented with 0.1 mg ⋅ l–1 benzylaminopurine prior to root induction in rooting medium markedly increased the rootability of shoots that were recalcitrant to rooting. Histochemical assay revealed the expression of the GUS gene in leaf, stem, and root tissues of transgenic plants. Insertion of the GUS gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis, further confirming the integration and expression of T-DNA in these plants. Received: 1 August 1997 / Revision received: 11 December 1997 / Accepted: 24 January 1998  相似文献   

19.
Whey permeate from dairy industry was hydrolyzed enzymatically to cleave its main carbon source, lactose, to glucose and galactose. The hydrolysis products were chosen as carbon sources for the production of poly-3-hydroxybutyric acid (PHB) by Pseudomonas hydrogenovora. In shaking flask experiments, the utilization of whey permeate as a cheap substrate was compared to the utilization of pure glucose and galactose for bacterial growth under balanced conditions as well as for the production of PHB under nitrogen limitation. After determination of the inhibition constant Ki for sodium valerate on biomass production (Ki=1.84 g/l), the biosynthesis of PHA co-polyesters containing 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) units from hydrolyzed whey permeate and valerate was investigated. The application of hydrolyzed whey permeate turned out to be advantageous compared with the utilization of pure sugars. Therefore, fermentation under controlled conditions in a bioreactor was performed with hydrolyzed whey permeate to obtain detailed kinetic data (maximum specific growth rate, mu max=0.291/h, maximum polymer concentration, 1.27 g/l PHB), values for molecular mass distribution (weight average molecular weight Mw=353.5 kDa, polydispersity index PDI=3.8) and thermo analytical data. The fermentation was repeated with co-feeding of valerate (maximum specific growth rate, mu(max)=0.201/h, maximum polymer concentration, 1.44 g/l poly-(3HB-co-21%-3HV), weight average molecular weight M(w)=299.2 kDa, polydispersity index PDI=4.3).  相似文献   

20.
A highly efficient and reproducible protocol was developed to obtain transgenic Alstroemeria plants by combining Agrobacterium tumefaciens with friable embryogenic callus (FEC). To develop this transformation method, factors such as infection time, cocultivation period, effect of acetosyringone (AS), different dilution concentrations of the bacterium and temperature during cocultivation were evaluated. A protocol was developed in which transient GUS expression activity was observed ranging from 25% to 55% out of the cocultivated FEC cultures, when FEC cultures were infected for 30 min with 50 μM AS, 1:10 dilution of bacteria, and then cocultivated at 24°C in the dark for 7 days with Agrobacterium strain LBA4404 (pTOK233) that carried gus, nptII and hpt genes. Seven independent experiments produced a total of 1300 transformed somatic embryos with shoots from 3.5 g of FEC. Of these germinated embryos, 50% developed into plants in vitro. Thus, on average, 500 mg of FEC infected with A. tumefaciens produced approximately 80–100 transgenic plants within 6–8 months via a selection process with 2.5–20 mg L?1 hygromycin. Additionally, transformation was also performed with Agrobacterium strain AGL1 (containing the uidA and ppt genes), and this showed that luciferase‐based selection was less detrimental to the transgenic lines than was herbicide‐based selection. The transformation efficiency was 18.6% for the luciferase‐based selection and 7.6% for the PPT‐based selection, although with luciferase‐based selection, more false positives were obtained (about a quarter of the lines were escapes). The nptII and uidA genes were detected by polymerase chain reaction analysis in nine of the 19 tested lines. The results indicate that the system developed here can be used as an alternative to particle bombardment of Alstroemeria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号