首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ten of 11 supernodulating mutants of soybean [ Glycine max (L.) Merr.] cv. Bragg, in which nodulation was far in excess of that in the wild type, showed pronounced tolerance of nodulation to applied nitrate. Mutant nts (nitrate-tolerant symbiosis) 1116 had an intermediate nodulation response and also showed some inhibition by nitrate. Mutant 1029, a revertant of nts382 (an extreme supernodulator), showed a wild-type nodulation pattern and was equally sensitive to nitrate as cv. Bragg. Grafting experiments with cv. Bragg and nts382 indicated that both supernodulation and tolerance of nodulation to nitrate were dependent on shoot factors. Total leaf nitrate reductase (EC 1.6.6.1 and EC 1.6.6.2) activity of the supernodulating mutants was similar to that in cv. Bragg. We conclude from these results that the inhibitory effect of nitrate on nodule initiation and development in soybean depends on an interaction between nitrate and the autoregulation singal. In the supernodulating mutants, the autoregulation signal is either altered or absent and cosequently nodulation in these mutants is not sensitive to nitrate.  相似文献   

2.
We previously found that the ethylene inhibitor Ag+ could overcome the inhibitory effect of nitrate on nodulation of soybean ( Glycine max ) cv. Bragg. The same treatment increased nodulation quantitatively under non-inhibitory conditions, strongly suggesting involvement of ethylene in the control of nodulation in this species. Supernodulation mutants that lack internal autoregulation of nodulation, however, had biosynthesis capacity similar to the wild type. In the present work, the effects of ethylene on nodulation of 'Bragg' and two separate, but allelic, supernodulating mutants ( nts382 and nts1007 ) were compared. The nodulation process appeared much more sensitive than plant growth and development to ethylene, which reduced the number of nodules per plant, but nearly twofold more in the wild type than in the supernodulation mutants. The cause–effect relationship is established by the counteracting effect of Ag+ and the fact that the stronger the inhibition by ethylene, the higher the recovery of nodulation ability with the ethylene antagonist. This higher tolerance of or lower sensitivity to ethylene in nts382 persists even under low inoculum dose, where nodule number and mass could be decreased to wild-type levels. Differences between the mutant and the wild type in the triple response test do not appear to support differences in ethylene perception on a whole-plant basis. The results suggest that sensitivity of nodulation to ethylene might have been affected in supernodulation mutants.  相似文献   

3.
The distribution of nodules of soybean (Glycine max (L.) Merr.) cultivar Bragg and the supernodulating mutant derivative nts382 was examined on the primary root relative to the first emerging lateral root, and on laterals relative to the base of the roots of plants grown in sand-vermiculite. Mutant nts382 nodulates profusely even in the presence of nitrate and appears defective in a systemic autoregulatory response that regulates nodule number in soybean. Nodules were clustered on primary roots about the first 4 cm down from the first emerging lateral root in both genotypes. Nodulation profiles showed reduced nodulation in younger and older regions of the primary root. Similarly, nodules appeared clustered close to the base of the lateral roots. Decreasing inoculum dose shifted nodule emergence to younger regions of the primary root and to lateral roots emerging in younger portions of the primary root. Our results indicate that the supernodulating mutant is able to regulate nodule number in both primary and lateral roots in the particulate matrix.  相似文献   

4.
When soybean (Glycine max ) nodulation mutant nts 382 was inoculated with Bradyrhizobium japonicum, these plants nodulated significantly more than the parental type Bragg. Nts 382 seedlings displayed wild-type nodulation pattern when aqueous extracts of young Bragg shoots were applied to the cultural medium together with nutrient solution. Application of young nts 382 shoot extracts to Bragg seedlings did not result in any apparent increase in nodule number. In graft experiments, young shoots from mutant nts 382 induced supernodulation on Bragg root stocks, while no supernodulation was observed when Bragg seedlings were used as scion and grafted onto nts 382 root stocks. Further, the effectiveness of Bragg plant extracts to suppress supernodulation on nts 382 seedlings was found to depend on the age of the plant material used, being very ineffective with extracts from 60-day-old plants. The age effect was not observed in graft experiments. These findings suggest that soybean supernodulation phenomenon may be controlled by one or a few unknown chemicals or plant hormones.  相似文献   

5.
In soybeans ( Glycine max L. Merr.), high levels of soil nitrate inhibit N2 fixation, and nitrate-tolerant symbioses have been identified within a chemically mutagenized line of cv. Bragg denoted nts382 and within the line K466, a genotype representative of a number of Korean soybean cultivars. The genotypes nts382 and K466 were examined to see if they could be used as a model system for studying the mechanism responsible for the short-term (i.e. 3-day) inhibition of specific nitrogenase activity, especially the mechanism behind the greater O2 limitation of nodule metabolism that is characteristic of nitrate inhibition of N2 fixation in soybean. In nts382, total nitrogenase activity (TNA = H2 production in Ar:O2) was inhibited to a lesser degree (48% of control) relative to Bragg (30% of control), and the nitrate-treated symbioses showed less of an O2 limitation of nodule metabolism in nts382 than in Bragg. However, the relative proportion of O2 limitation to the total nitrate inhibition was similar (40 and 41%) in nts382 and Bragg, respectively. Therefore, the nts382 symbioses may be useful in elucidating the general mechanism for down-regulation of nitrogenase activity in soybean, but would not be a useful model system for studying the control of O2-limited metabolism following nitrate exposure. The effects of nitrate on TNA and on the degree of O2 limitation of nodule metabolism were the same in K466 and a reference cultivar Maple Arrow. Consequently, the tolerance of K466 to nitrate reported previously was attributed to the ability of this symbiosis to maintain nodule biomass in the presence of nitrate, not to any ability to maintain specific nitrogenase activity in the presence of nitrate.  相似文献   

6.
In soybeans ( Glycine max L. Merr.), high levels of soil nitrate inhibit N2 fixation, and nitrate-tolerant symbioses have been identified within a chemically mutagenized line of cv. Bragg denoted nts382 and within the line K466, a genotype representative of a number of Korean soybean cultivars. The genotypes nts382 and K466 were examined to see if they could be used as a model system for studying the mechanism responsible for the short-term (i.e. 3-day) inhibition of specific nitrogenase activity, especially the mechanism behind the greater O2 limitation of nodule metabolism that is characteristic of nitrate inhibition of N2 fixation in soybean. In nts382, total nitrogenase activity (TNA = H2 production in Ar:O2) was inhibited to a lesser degree (48% of control) relative to Bragg (30% of control), and the nitrate-treated symbioses showed less of an O2 limitation of nodule metabolism in nts382 than in Bragg. However, the relative proportion of O2 limitation to the total nitrate inhibition was similar (40 and 41%) in nts382 and Bragg, respectively. Therefore, the nts382 symbioses may be useful in elucidating the general mechanism for down-regulation of nitrogenase activity in soybean, but would not be a useful model system for studying the control of O2-limited metabolism following nitrate exposure. The effects of nitrate on TNA and on the degree of O2 limitation of nodule metabolism were the same in K466 and a reference cultivar Maple Arrow. Consequently, the tolerance of K466 to nitrate reported previously was attributed to the ability of this symbiosis to maintain nodule biomass in the presence of nitrate, not to any ability to maintain specific nitrogenase activity in the presence of nitrate.  相似文献   

7.
The growth of a supernodulating, nitrate-tolerant soybean [ Glycine max (L.) Merr.] mutant nts 382 (nitrate-tolerant symbiosis) was compared to that of its wild-type parent, cv. Bragg, over the first 50 days after sowing. Plants were grown either inoculated in the absence of an external nitrogen source or uninoculated in the presence of 5 m M KNO3. For both treatments, nts 382 growth up to 13 days after planting was faster than that of cv. Bragg. Thereafter, supernodulation of inoculated nts 382 occurred and growth of cv. Bragg was faster; shoot and root dry weight increments and leaf area were greater in cv. Bragg, but the N content of nts 382 was higher. Relative growth and net assimilation rates were lower in nts 382, which had faster shoot and root respiration rates. Shoot growth of uninoculated plants was similar for both mutant and wild-type but roots of nts 382 were slightly smaller than those of cv. Bragg. Total plant N content was similar in uninoculated cv. Bragg and nts 382 but the latter had a higher leaf N content. Early lateral root formation (prior to nodule emergence) was greater in nts 382 regardless of whether rhizobia or KJNO3 were present. We conclude that nts 382 has some inherent differences from its parent but that supernodulation significantly retards plant growth.  相似文献   

8.
Growth and symbiotic performance of soybean (Glycine max (L.)Merrill) cv. Bragg and three of its induced nodulation mutants(nod49, non-nodulating; ntsl 116, intermediate supernodulator;nts1007, extreme supernodulator) were compared throughout developmentunder different nitrogen regimes (0, 2, 5 and 10 mol nitratem–3). Nitrogen fixation was assessed using 15N-isotopedilution and xylem sap analysis for ureide content. Both techniquesconfirmed a complete lack of N2 fixation activity in nod49.Plant reliance on nitrogen fixation by the other genotypes wasdependent on the nitrate regime and the developmental stage.The ntsl007 and ntsl 116 mutants fixed more nitrogen than theparent cultivar in the presence of 10 mol m–3 nitratein the nutrient solution, but higher input of symbioticallyderived nitrogen was still insufficient to offset the amountof nitrogen removed in the harvested seed. However, the mutantsutilized less nitrate for growth than Bragg. Comparison of estimatesof N2 fixation derived from the 15N-dilution technique withthose based on relative ureide content of xylem sap indicatedthat the latter offered a simple and reliable procedure forevaluating the symbiotic performance of supernodulating plants. Key words: 15N-isotope dilution, supernodulation, ureides  相似文献   

9.
The availability of soybean mutants with altered symbiotic properties allowed an investigation of the shoot or root control of the relevant phenotype. By means of grafts between these mutants and wild-type plants (cultivar Bragg and Williams), we demonstrated that supernodulation as well as hypernodulation (nitrate tolerance in nodulation and lack of autoregulation) is shoot controlled in two mutants (nts382 and nts1116) belonging most likely to two separate complementation groups. The supernodulation phenotype was expressed on roots of the parent cultivar Bragg as well as the roots of cultivar Williams. Likewise it was shown that non-nodulation (resistance to Bradyrhizobium) is root controlled in mutant nod49. The shoot control of nodule initiation is epistatically suppressed by the non-nodulation, root-expressed mutation. These findings suggest that different plant organs can influence the expression of the nodulation phenotype.  相似文献   

10.
Wu S  Harper JE 《Plant physiology》1990,92(4):1142-1147
It was previously reported that three soybean (Glycine max [L.] Merr.) nodulation mutants (NOD1-3, NOD2-4, and NOD3-7) were partially tolerant to nitrate when nitrate was supplied simultaneously with inoculation at the time of transplanting. The current study evaluated the effect of short-term nitrate treatment on nitrogenase activity (C2H2 reduction per plant and per nodule weight) and on relative abundance of ureides when nitrate application was delayed until plants were 3 weeks old and nodules were fully developed. Nitrogenase activity of the mutants was similar to that of Williams after an initial 3-week growth period, prior to nitrate treatment. Application of 5 millimolar nitrate resulted in greater inhibition of nitrogenase activity in Williams than in the three mutants. NOD1-3 was most tolerant of nitrate among the mutants tested and showed the highest relative abundance of ureides. Although C2H2 reduction activity per plant for NOD1-3 was higher than for Williams in the presence of nitrate, C2H2 reduction activity per gram of nodules was lower for NOD1-3 than for Williams in the presence and absence of nitrate. Compared to Williams, NOD1-3 had higher nodule ureide concentration and had similar glutamine synthetase activity in nodule tissue, indicating its nodules have normal nitrogen assimilation pathways. Nitrate application resulted in ureide accumulation in nodule tissue as well as in all plant parts assayed. Unexpectedly, nitrate treatment also increased the rate of ureide degradative capacity of leaves in both NOD1-3 and Williams. The data confirmed that nitrogenase activity of the selected nodulation mutants was more, but still only partially, tolerant of nitrate compared with the Williams parent.  相似文献   

11.
Application of allopurinol (AP; 1H-pyrazolo-[3,5- d ]pyrimidine-4-o1) to intact nodulated roots of ureide-forming legumes causes rapid inhibition of NAD:xanthine dehydrogenase (XDH: EC 1.2.1.37), cessation of ureide synthesis and, subsequently, severe nitrogen deficiency (Atkins et al. 1988. Plant Physiology 88: 1229–1234). Nitrogen deficiency is a result of inhibited nitrogenase (EC 1.7.99.2) activity. Using an open gas exchange system to measure H2 and CO2 evolution, short term effects of AP application were examined in a Hup soybean symbiosis [ Glycine max (L.) Merr. cv. Harosoy: USDA 16]. The onset of inhibition of nitrogenase was detected after ca 2 h exposure of the roots to AP. At the same time xanthine began to accumulate and ureide levels declined in nodules as a result of inhibition of XDH. The decline in H2 evolution following AP application was not due to altered electron allocation between N2 and H+ by nitrogenease but was coincident with increased gaseous diffusive resistance of nodules and a decline in intracellular oxygen concentration. A possible scheme for the intermediary metabolism of soybean nodules which might account for a direct connection between nitrogenase activity and ureide synthesis is proposed. The suggested mechanism envisages coupling production of reducing power by cytosolic enzymes of purine oxidation to synthesis of dicarboxylic acid substrates (malate and succinate) required for bacteroid respiration.  相似文献   

12.
A comparison between two hydroponically-grown soybean genotypes(Glycine max [L.] Merr.) cv. Bragg and the supernodulating mutantnts 1007 was made in terms of dry matter accumulation, carbon,nitrogen, and mineral element distribution, 15N natural abundanceand the effect of short-term treatment with 4·0 mol m–3KNO3 on nitrogenase activity and respiration. Differences weremost pronounced in nodule dry weight and plant nitrogen content,both of which were recorded to be substantially elevated inthe mutant. Mineral element concentrations in different plantparts proved to be rather similar with the exception of Ca,found to be lower in leaves of the mutant, and Mn concentrationswhich were twice as high in roots of nts 1007. The values of15N natural abundance showed that both genotypes were equallydependent on nitrogen fixation when nitrate was absent. Theresults of the acetylene reduction assays indicated similarspecific nodule activity, while on a per plant basis nitrogenaseactivity of the mutant proved to be more than twice the amountof Bragg. This effect was also reflected in higher nodule respirationwhile root respiration remained below that of Bragg. Nitrate induced a substantial reduction in nitrogenase activitynot only in Bragg, but also in nts 1007. Nodule respiratoryactivity of Bragg was reduced by nitrate from 1·27 to0·34 mg C h–1 plant–1. In nts 1007 correspondingvalues were 2·70 to 1·52 mg C h–1 plant–1.Starch concentration in nodules was decreased in both genotypes,but nevertheless remained higher in nts 1007. Values for solublesugars in nodules even increased in the mutant in response tonitrate while the same treatment caused a reduction in Bragg.The data indicate that nitrogenase activities of Bragg and nts1007 are equally sensitive to short-term application of nitrate. Key words: Glycine max, C and N distribution, nitrate, root respiration, 15N natural abundance  相似文献   

13.
We compared the formation of nodules on the primary roots of a soybean cultivar (Glycine max (L.) Merr. cv. Bragg) and a supernodulating mutant derivative, nts382. Inoculation with Bradyrhizobium japonicum USDA 110 at different times after seed imbibition showed that the roots acquired full susceptibility to infection only between 3 and 4 days postgermination. When the plants were inoculated with serial dilutions of a bacterial suspension, the number of nodules formed in the initially susceptible region of the roots was linearly dependent on the logarithm of the inoculum dose until an optimum dose was reached. At least 10-fold-lower doses were required to induce half-maximal nodulation responses on nts382 than on the wild type. However, at optimal doses, about six times as many nodules formed in the initially susceptible region of the roots in nts382. Since there was no appreciable difference in the apparent rates of nodule emergence, the increased efficiency of nodule initiation in the supernodulating mutant could have resulted from a lower threshold of response to bacterial symbiotic signals. Two inoculations (24 h apart) of G. max cv. Bragg revealed that there was a host-mediated regulatory response that suppressed nodulation in younger portions of the primary roots, as reported previously for other soybean cultivar-Bradyrhizobium combinations. Similar experiments with nts382 revealed a comparable suppressive response, but this response was not as pronounced as it was in the wild type. This and other results suggest that there are additional control mechanisms for nodulation that are different from the systemic autoregulatory control of nodulation altered in supernodulating mutants.  相似文献   

14.
Soybean plants (Glycine max [L.] Merr) were grown in sand culture with 2 millimolar nitrate for 37 days and then supplied with 15 millimolar nitrate for 7 days. Control plants received 2 millimolar nitrate and 13 millimolar chloride and, after the 7-day treatment period, all plants were supplied with nil nitrate. The temporary treatment with high nitrate inhibited nitrogenase (acetylene reduction) activity by 80% whether or not Rhizobium japonicum bacteroids had nitrate reductase (NR) activity. The pattern of nitrite accumulation in nodules formed by NR+ rhizobia was inversely related to the decrease and recovery of nitrogenase activity. However, nitrite concentration in nodules formed by NR rhizobia appeared to be too low to explain the inhibition of nitrogenase. Carbohydrate composition was similar in control nodules and nodules receiving 15 millimolar nitrate suggesting that the inhibition of nitrogenase by nitrate was not related to the availability of carbohydrate.

Nodules on plants treated with 15 millimolar nitrate contained higher concentrations of amino N and, especially, ureide N than control nodules and, after withdrawal of nitrate, reduced N content of treated and control nodules returned to similar levels. The accumulation of N2 fixation products in nodules in response to high nitrate treatment was observed with three R. japonicum strains, two NR+ and one NR. The high nitrate treatment did not affect the allantoate/allantoin ratio or the proportion of amino N or ureide N in bacteroids (4%) and cytosol (96%).

  相似文献   

15.
The water extracts of leaves and roots from supernodulating soybean (Glycine max (L.) Merr. ) nts 382 and nonnodulating soybean Nod 49 have been chromatographed using filtering method through the column (25 cm × 2 cm) Sephadex G25 and 4 fractions, namly, nts 382 (Nod 49) F1, nts 382 (Nod 49) F2, nts 382 (Nod 49) F3, and nts 382 (Nod 49) F4 could be distinguished according to nitrate reductase (NR) activities inhibited by the eluate. The inhibition of NR activity by the noninoculated nts 382 F2 and the nts 382 F4 in vitro were much stronger than that by the inoculated nts 382 F2 and nts 382 F4. On the contrary, the obvious inhibition of NR activity in vitro by the noninoculated Nod 49 F2 and Nod 49 F4 were substantialy strengthed again by the innoculated Nod 49 F2 and Nod 49 F4. The facts indicated that the quantity of NR inhibitors in the leaf cells of soybean nts 382 reduced after the inoculation but was that in the inoculated Nod 49 leaf cells further more accumulated. Both nodulations assays, the nodulation of soybean "Bragg " injected with inoculated nts 382 Fl, nts 382 F2, nts 382 F3 and nts 382 F4 from leaves and roots and the nodulation of soybean nts 382 injected with inoculated Nod 49 F2, Nod 49 F3 and Nod 49 F4 from leaves only showed that nts 382 Fl and nts 382 F2 increased nodules of soybean "Bragg" by 1 to 3 times but nts 382 F3 and nts 382 F4 did not. Inhibition of soybeannts 382 nodulation by inoculated Nod 49 F2 Nod 49 F3 and Nod 49 F4 expressed that the Nod 49 F4 only inhibited the nodulation strongly by one time in the experiments with nts 382 plants with leaves, and by 15 times in the experiments with nts 382 plants without leaves at 10 d of inoculation and injection and this inhibition was nonreversible even after stopping injection from the 11th day to the 15th day after inoculation.  相似文献   

16.
我国9个大豆(GlycinemaxL.Merr.)品种感染根瘤菌USDA110后,产生不同的结瘤数,低者在20个以下.高者在60个以上。赤豆、绿赤豆也可被感染结瘤,而豇豆、扁豆则不能。超结瘤大豆nts382作为接穗时能诱导我国大豆原结瘤数有45个的开育10号、原结瘤数有12个的大黄分别发生高结瘤。nts382作为砧木时,则不能表现超结瘤.表明超结瘤因子能传给我国大豆,反之存在于我国大豆中的限制超结瘤的因子也能传给nts382。nts382于NO3-环境中仍表现超结瘤的特点也能导入开育10号、大黄及赤豆根部,并使之在NO3-环境中结瘤。在NO3-环境中不能结瘤的开育10号作为接穗,nts382作为砧木的嫁接植株,于子叶生长阶段接受NO3-时,仍能结瘤,于真对生长时接受NO3-时.则不能结瘤,表明限制结瘤因子于真叶细胞中被诱导形成。  相似文献   

17.
Allopurinol (1H-pyrazolo-[3,4-d]pyrimidine-4-ol), an inhibitor of xanthine oxidation in ureide-producing nodulated legumes, was taken up from the rooting medium, translocated in xylem, and transferred to nodules of both the ureide-forming cowpea (Vigna unguiculata L. Walp.) and the amide-forming white lupin (Lupinus albus L.). Cowpea suffered severe nitrogen deficiency, extreme chlorosis, and reduced growth, whereas lupin was unaffected by the inhibitor. Similar results were obtained with oxypurinol (1H-pyrazolo-[3,4-d]pyrimidine-4,6-diol). Xylem composition of symbiotic cowpea was markedly changed by allopurinol. Ureides fell to a very low level, but xanthine and, to a lesser extent, hypoxanthine increased markedly. Xylem glutamine was also reduced, but there was little change in other amino acids. Nitrogenase (EC 1.7.99.2) activity of intact nodulated plants or nodulated root segments of plants treated with allopurinol or oxypurinol for 24 hours or more was severely inhibited in cowpea but unaffected in lupin for periods of exposure up to 9 days. Nitrogenase activity of slices of nodules prepared from allopurinol-treated cowpea showed inhibition comparable to that of intact plants. Breis prepared from nodules of treated plants showed no reduction in nitrogenase, nor was there reduction in activity of breis following addition of allopurinol, xanthine, or a range of purine pathway intermediates. Increasing the O2 concentration in assays above 20% (volume/volume) reversed inhibition of nitrogenase by allopurinol in intact nodulated roots. It was concluded for cowpea that allopurinol not only inhibited ureide synthesis but also caused inhibition of nitrogenase activity, thereby leading to progressive dysfunction and eventual senescence of nodules. The mechanistic relationships between inhibition of ureide biosynthesis, changes in gaseous diffusion resistance, and reduced nitrogenase activity remain obscure.  相似文献   

18.
Abstract The ureide content of soybean (Glycine max (L.) Merr.) nodules was unaffected by variations in the transpirational rate, while whole plant manipulations designed to decrease phloem supply to nodules resulted in lower rates of nitrogenase activity and an increase in the ureide content of the nodules. The rate of ureide export from the nodule was estimated from the exponential rate of decrease in the pool size of ureides in nodules, following exposure to an N2-free atmosphere (Ar:O2). Export was greatly reduced under treatments which reduced phloem supply to the nodule. A water budget for nodules suggested that the delivery of water to the nodule via mass flow in the phloem was comparable to that required for export of ureides from the nodule in the xylem from the nodule. Therefore, we suggest that xylem export from nodules is related to the phloem supply to the nodule rather than to the transpirational flux in the parent root. This suggestion is related to the reported decreases in nodule permeability to gases under conditions of phloem deprivation.  相似文献   

19.
Ureide concentration in the cortical apoplast of soybean (Glycinemax(L.) Merr.) nodules increases rapidly in response to noduleexcision. The objective here was to determine if changes inapoplastic ureide may be related to the control of resistanceto gas diffusion which is thought to be localized in the nodulecortex. Following decapitation of shoots, nitrogenase activity(acetylene reduction) and ureide concentration in total noduleextracts declined over a period of several hours. Apoplasticureide concentration relative to total nodule ureide was elevatedunder these conditions, but the treatment effect was small comparedto non-decapitated controls. Decapitation also caused a significantdecline in the concentrations of sucrose, glucose, and D-pinitolin nodules. However, the decline in carbohydrates was similarin the nodule cortex and the nodule as a whole, suggesting thatthe carbohydrate changes are not related to a cortex-localizedmechanism. Non-invasive treatments involving increases or decreasesin oxygen concentration supplied to nodulated roots caused rapiddecreases in respiration of nodulated roots and in ureide concentrationin total nodule extracts, but did not cause major changes inapoplastic ureide concentrations. The combined results indicatethat apoplastic ureide is probably not involved in the regulationof resistance to gas diffusion. The rapid decline in noduleureide concentrations in response to changing oxygen supplydocuments the sensitivity of ureide synthesis and/or transportto alterations in nodule respiration and/or nitrogenase activity Key words: Glycine max, Pisum sativum, ureide, carbohydrates  相似文献   

20.
In the presence of 0.5 millimolar allopurinol (4-hydroxypyrazolo [3,4-d]pyrimidine), an inhibitor of NAD:xanthine oxidoreductase (EC 1.2.3.2), intact attached nodules of cowpea (Vigna unguiculata L. Walp. cv Vita 3) formed [15N]xanthine from 15N2 at rates equivalent to those of ureide synthesis, confirming the direct assimilation of fixed nitrogen into purines. Xanthine accumulated in nodules and was exported in increasing amounts in xylem of allopurinol-treated plants. Other intermediates of purine oxidation, de novo purine synthesis, and ammonia assimilation did not increase and, over the time course of experiments (4 hours), allopurinol had no effect on nitrogenase (EC 1.7.99.2) activity. Negligible 15N-labeling of asparagine from 15N2 was observed, suggesting that the significant pool (up to 14 micromoles per gram of nodule fresh weight) of this amide in cowpea nodules was not formed directly from fixation but may have accumulated as a consequence of phloem delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号