首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tryptophan repressor regulates expression of the aroH, trpEDCBA, and trpR operons in Escherichia coli. The protein contains no cysteine residues, and the presence of this reactive side chain would allow introduction of spectral probes to monitor binding reactions. Three mutant trp aporepressors, each with a point mutation from serine to cysteine, were produced at positions 67, 86, and 88 by oligonucleotide-directed site-specific mutagenesis. This single conservative substitution affected both tryptophan and operator DNA affinities in all three purified proteins. Cysteine substitution for serine at position 67 decreased tryptophan binding by approximately 6-fold and the operator DNA affinity by approximately 50-fold. The proximity of this amino acid to Gln-68 which is involved in binding to operator DNA (Otwinowski, Z., Schevitz, R. W., Zhang, R.-G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., Luisi, B. F., and Sigler, P. B. (1988) Nature 335, 321-329) may account for this effect. Substitution at position 86 diminished tryptophan binding by approximately 4-fold and operator DNA binding by approximately 130-fold. The participation of Ser-86 in the hydrogen bond network required for operator binding (Otwinowski, Z., Schevitz, R. W., Zhang, R.-G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., Luisi, B. F., and Sigler, P. B. (1988) Nature 335, 321-329) presumably accounts for the DNA binding effects. The diminished corepressor activity in these two mutants may derive from distortions of the binding region, as the tryptophan and DNA binding sites are intimately related. The mutation at position 88 altered tryptophan binding the most of the three mutants (approximately 18-fold) and operator binding least (approximately 12-fold). Ser-88 forms a hydrogen bond with the amino group of bound tryptophan (Schevitz, R. W., Otwinowski, Z., Joachimiak, A., Lawson, C. L., and Sigler, P. B. (1985) Nature 317, 782-786), and alteration of the geometry of the side chain would be anticipated to perturb the topology of the binding site. The diminished operator affinity may derive from improper alignment of the tryptophan ligand, crucial for high affinity operator binding (Otwinowski, Z., Schevitz, R. W., Zhang, R.-G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., Luisi, B. F., and Sigler, P. B. (1988) Nature 335, 321-329).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The Escherichia coli trp repressor binds to the trp operator in the presence of tryptophan, thereby inhibiting tryptophan biosynthesis. Tryptophan analogues lacking the alpha-amino group act as inducers of trp operon expression. We have used one- and two-dimensional 1H-NMR spectroscopy to compare the binding to the repressor of the corepressors L-tryptophan, D-tryptophan and 5-methyl-DL-tryptophan with that of the inducer indole-3-propionic acid. We have determined the chemical shifts of the indole ring protons of the ligands when bound to the protein, principally by magnetization-transfer experiments. The chemical shifts of the indole NH and C4 protons differ between corepressors and inducer. At the same time, the pattern of intermolecular NOE between protons of the protein and those of the ligand also differ between the two classes of ligand. These two lines of evidence indicate that corepressors and inducers bind differently in the binding site, and the evidence suggests that the orientation of the indole ring in the binding site differs by approximately 180 degrees between the two kinds of ligand. This is in contrast to a previous solution study [Lane, A.N. (1986) Eur. J. Biochem. 157, 405-413], but consistent with recent X-ray crystallographic work [Lawson, C.L. & Sigler, P.B. (1988) Nature 333, 869-871]. D-Tryptophan and 5-methyltryptophan, which are more effective corepressors than L-tryptophan, bind similarly to L-tryptophan. The indole ring of D-tryptophan appears to bind in essentially the same orientation as that of the L isomer. There are, however, some differences in chemical shifts and NOE for 5-methyltryptophan, which indicate that there are significant differences between the two corepressors L-tryptophan and 5-methyltryptophan in the orientation of the indole ring within the binding site.  相似文献   

3.
Unexpected features seen by high resolution X-ray crystallography at the interface of the trp repressor and the 'traditional' trp operator provoked the claim that the DNA fragment used in the crystal structure is not the true operator, and therefore that the crystal structure of the trp repressor-operator complex does not portray a specific interaction. An alternative sequence was proposed mainly on the basis of mutational studies and gel retardation analysis of short target duplexes (Staacke et al., 1990a,b). We have reexamined the sequence consensus in trpR-repressible promoters and analyzed the mutagenesis experiments of others including Staacke et al. (1990a) and found them fully consistent with the interactions of the traditional operator sequence seen in the crystal structure, and stereochemically inconsistent with the above referenced alternative model. Moreover, an in vitro trp repressor-DNA binding analysis, employing both novel DNA constructs devised to avoid previously encountered artifacts as well as full-length promoter sequences, indicates that the traditional operator used in the crystal structure is the preferred target of the trp repressor.  相似文献   

4.
The relative mobility of residues in the trp repressor of Escherichia coli has been examined in the absence and presence of the corepressor L-tryptophan by one- and two-dimensional 1H NMR. A comparison of relative intensities of cross peaks in NOESY and COSY spectra allowed a rigid Tyr and a mobile Tyr residue, three mobile Ser residues and three mobile Lys residues to be detected. The two Tyr residues were assigned by selective nitration with tetranitromethane. The singly nitrated molecule (on Tyr7) binds the trp operator with an affinity close to that of the unmodified repressor. Measurements of the intraring cross-relaxation rate constant as a function of temperature for Tyr7 shows the presence of considerable internal motion on the subnanosecond time scale in the flexible N-terminal arm. The order parameter, S2, characterising the motion is 0.35, which increases to about 0.5 in the presence of Trp. Trp decreases both the amplitude of the motion and the rate of the motion. At least three of the six Ser residues of the trp repressor have greater mobility than expected for a rigid body, and two of the Ser residues are sensitive to the presence of Trp. The more mobile Ser residues are probably those on the N-terminal arm and the C-terminal sequence. These results complement the single-crystal X-ray diffraction studies for which the electron density of the first ten and last three amino acid residues is weak. The solution data are consistent with proposals that the flexible N-terminal arm of the trp repressor makes important contacts with the DNA.  相似文献   

5.
The fluorescence decay properties of wild-type trp repressor (TR) have been characterized by carrying out a multi-emission wavelength study of the frequency response profiles. The decay is best analyzed in terms of a single exponential decay near 0.5 ns and a distribution of lifetimes centered near 3-4 ns. By comparing the recovered decay associated spectra and lifetime values with the structure of the repressor, tentative assignments of the two decay components recovered from the analysis to the two tryptophan residues, W19 and W99, of the protein have been made. These assignments consist of linking the short, red emitting component to emission from W99 and most of the longer bluer emitting lifetime distribution to emission from W19. Next, single tryptophan mutants of the repressor in which one of each of the tryptophan residues was substituted by phenylalanine were used to confirm the preliminary assignments, inasmuch as the 0.5-ns component is clearly due to emission from tryptophan 99, and much of the decay responsible for the recovered distribution emanates from tryptophan 19. The data demonstrate, however, that the decay of the wild-type protein is not completely resolvable due both to the large number of components in the wild-type emission (at least five) as well as to the fact that three of the five lifetime components are very close in value. The fluorescence decay of the wild-type decay is well described as a combination of the components found in each of the mutants. However, whereas the linear combination analysis of the 15 data sets (5 from the wild-type and each mutant) yields a good fit for the components recovered previously for the two mutants, the amplitudes of these components in the wild-type are not recovered in the expected ratios. Because of the dominance of the blue shifted emission in the wild-type protein, it is most likely that subtle structural differences in the wild-type as compared with the mutants, rather than energy transfer from tryptophan 19 to 99, are responsible for this failure of the linear combination hypothesis.  相似文献   

6.
The interaction of the trp repressor with several trp operator DNA fragments has been examined by DNA gel retardation assays and by circular dichroism, in the absence and presence of the corepressor l-tryptophan. The holorepressor binds stoichiometrically to both the trpO and aroH operators, forming 1:1 complexes. In the presence of excess protein, additional complexes are formed with these operator fragments. The relative electrophoretic mobilities of the 1:1 complexes differ significantly for trp and aroH operators, indicating that they differ substantially in gross structure. A mutant trp operator, trpO c, has low affinity for the holorepressor, and forms only complexes with stoichiometries of 2:1 (repressor: DNA) or higher, which have a very low electrophoretic mobility. Specific binding is also accompanied by a large increase in the intensity of the near ultraviolet circular dichroism, with only a small blue shift, which is consistent with significant changes in the conformation of the DNA. Large changes in the chemical shifts of three resonances in the 31P NMR spectrum of both the trp operator and the aroH operator occur on adding repressor only in the presence of L-tryptophan, consistent with localised changes in the backbone conformation of the DNA.Abbreviations CD circular dichroism - trpO, trpR aroH trp operator fragments - trpO c trpMH mutant trp operator fragments  相似文献   

7.
The mechanisms of the requirement of glucose for steroidogenesis were investigated by monitoring the uptake of the glucose analogue 2-deoxy-D-glucose by rat testis and tumour Leydig cells. The characteristics of glucose transport in both of these cell types were found to resemble those of the facilitated-diffusion systems for glucose found in most other mammalian cells. The Leydig cells took up 2-deoxy-D-glucose but not L-glucose, and the uptake was inhibited by both cytochalasin B and forskolin. In the presence of luteinizing hormone, the rate of 2-deoxy-D-glucose uptake by both cell types was increased by approx. 50%. In addition to D-glucose, it was shown that the Leydig cells could also utilize 3-hydroxybutyrate or glutamine to maintain steroidogenesis.  相似文献   

8.
Interaction of the Escherichia coli trp repressor with the promoter-operator regions of the trp, aroH and trpR operons was studied in vivo and in vitro. The three operators have similar, but non-identical, sequences; each operator is located in a different segment of its respective promoter. In vivo repression of the three operons was measured using single-copy gene fusions to lacZ. The extent of repression varied from 300-fold for the trp operon, to sixfold for the aroH operon and threefold for the trpR operon. To determine whether differential binding of repressor to the three operators was responsible for the differences in repression observed in vivo, three in vitro binding assays were employed. Restriction-site protection, gel retardation and DNase footprinting analyses revealed that repressor binds to the three operators with almost equal affinity. It was also shown in an in vivo competition assay that repressor binds approximately equally well to each of the three operators. It is proposed that the differential regulation observed in vivo may be due to the different relative locations of the three operators within their respective promoters.  相似文献   

9.
The trp repressor of Escherichia coli (TR), although generally considered to be dimeric, has been shown by fluorescence anisotropy of extrinsically labeled protein to undergo oligomerization in solution at protein concentrations in the micromolar range (Fernando, T., and C. A. Royer 1992. Biochemistry. 31:3429-3441). Providing evidence that oligomerization is an intrinsic property of TR, the present studies using chemical cross-linking, analytical ultracentrifugation, and molecular sieve chromatography demonstrate that unmodified TR dimers form higher order aggregates. Tetramers and higher order species were observed in chemical cross-linking experiments at concentrations between 1 and 40 microM. Results from analytical ultracentrifugation and gel filtration chromatography were consistent with average molecular weight values between tetramer and dimer, although no plateaus in the association were evident over the concentration ranges studied, indicating that higher order species are populated. Analytical ultracentrifugation data in presence of corepressor imply that corepressor binding destabilizes the higher order aggregates, an observation that is consistent with the earlier fluorescence work. Through the investigation of the salt and pH dependence of oligomerization, the present studies have revealed an electrostatic component to the interactions between TR dimers.  相似文献   

10.
11.
We have examined the interaction of the trp repressor from Escherichia coli with a 20 base-pair synthetic operator. Nonspecific binding was relatively strong (Kd = 2 microM), but only weakly sensitive to the concentration of added salt [d log Kd)/(d log [Na]) = -1). 1H-NMR studies indicate that the structure of the repressor is not greatly altered on forming the complex, and that few if any of the lysine and arginine residues make direct contact with the DNA. However, the mobility of one of the two tyrosine residues is significantly decreased in the complex. The repressor makes close contact with the major grooves of the operator such that the base protons are broadened much more than expected on the basis of increased correlation time. There are large, differential changes in chemical shifts of the imino protons on forming the complex, as well as changes in the rate constants for exchange. The fraying of the ends is greatly diminished, consistent with a target size of about 20 base-pairs. The effects of the repressor on the NMR spectra and relaxation rate constants can be interpreted as a change in the conformation of the operator, possibly a kinking in the centre of the molecule.  相似文献   

12.
Flexibility of the DNA-binding domains of trp repressor   总被引:9,自引:0,他引:9  
An orthorhombic crystal form of trp repressor (aporepressor plus L-tryptophan ligand) was solved by molecular replacement, refined to 1.65 A resolution, and compared to the structure of the repressor in trigonal crystals. Even though these two crystal forms of repressor were grown under identical conditions, the refined structures have distinctly different conformations of the DNA-binding domains. Unlike the repressor/aporepressor structural transition, the conformational shift is not caused by the binding or loss of the L-tryptophan ligand. We conclude that while L-tryptophan binding is essential for forming a specific complex with trp operator DNA, the corepressor ligand does not lock the repressor into a single conformation that is complementary to the operator. This flexibility may be required by the various binding modes proposed for trp repressor in its search for and adherence to its three different operator sites.  相似文献   

13.
The dimeric protein, trp apo-repressor of Escherichia coli has been subjected to high hydrostatic pressure under a variety of conditions, and the effects have been monitored by fluorescence spectroscopic and infra-red absorption techniques. Under conditions of micromolar protein concentration and low, non-denaturing concentrations of guanidinium hydrochloride (GuHCl), tryptophan and 8-anilino-1-naphthalene sulfonate (ANS) fluorescence detected high pressure profiles demonstrate that pressures below 3 kbar result in dissociation of the dimer to a monomeric species that presents no hydrophobic binding sites for ANS. The FTIR-detected high pressure profile obtained under significantly different solution conditions (30 mM trp repressor in absence of denaturant) exhibits a much smaller pressure dependence than the fluorescence detected profiles. The pressure-denatured form obtained under the FTIR conditions retains about 50 % alpha-helical structure. From this we conclude that the secondary structure present in the high pressure state achieved under the conditions of the fluorescence experiments is at least as disrupted as that achieved under FTIR conditions. Fluorescence-detected pressure-jump relaxation studies in the presence of non-denaturing concentrations of GuHCl reveal a positive activation volume for the association/folding reaction and a negative activation volume for dissociation/unfolding reaction, implicating dehydration as the rate-limiting step for association/folding and hydration as the rate-limiting step for unfolding. The GuHCl concentration dependence of the kinetic parameters place the transition state at least half-way along the reaction coordinate between the unfolded and folded states. The temperature dependence of the pressure-jump fluorescence-detected dissociation/unfolding reaction in the presence of non-denaturing GuHCl suggests that the curvature in the temperature dependence of the stability arises from non-Arrhenius behavior of the folding rate constant, consistent with a large decrease in heat capacity upon formation of the transition state from the unfolded state. The decrease in the equilibrium volume change for folding with increasing temperature (due to differences in thermal expansivity of the folded and unfolded states) arises from a decrease in the absolute value for the activation volume for unfolding, thus indicating that the thermal expansivity of the transition state is similar to that of the unfolded state.  相似文献   

14.
T Fernando  C A Royer 《Biochemistry》1992,31(29):6683-6691
The unfolding properties of the trp repressor of Escherichia coli have been studied using a number of different time-resolved and steady-state fluorescence approaches. Denaturation by urea was monitored by the average fluorescence emission energy of the intrinsic tryptophan residues of the repressor. These data were consistent with a two-state transition from dimer to unfolded monomer with a free energy of unfolding of 19.2 kcal/mol. The frequency response profiles of the fluorescence emission brought to light subtle urea-induced modifications of the intrinsic tryptophan decay parameters both preceding and following the main unfolding transition. The increase of lifetime induced by urea required higher concentrations of urea than the increase in the total intensity described by Gittelman and Matthews [(1990) Biochemistry 29, 7011]. This indicates that the intensity increase has both dynamic and static origins. To assess the effect of tryptophan binding upon repressor stability, and to determine whether repressor oligomerization would be detectable in an unfolding experiment, we examined denaturation profiles of repressor labeled with the long-lived fluorescence probe 5-(dimethylamino)naphthalene-1-sulfonyl (DNS), by monitoring the average rotational correlation time of the probe. These experiments revealed a protein concentration dependent transition at low urea concentrations. This transition was promoted by tryptophan binding. We ascribe this transition to urea-induced dissociation of repressor tetramers. The main unfolding transition of the dimer to unfolded monomer was also observable using this technique, and the free energies associated with this transition were 18.3 kcal/mol in the absence of tryptophan and 24.1 kcal/mol in its presence, demonstrating that co-repressor binding stabilizes the repressor dimer against denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
The 3-dimensional structure of the trp repressor, aporepressor, and repressor/operator complex have been described. The NH2-terminal arms of the protein, comprising approximately 12-14 residues, were not well resolved in any of these structures. Previous studies by Carey showed that the arms are required for full in vitro repressor activity. To examine the roles of the arms more fully we have removed codons 2-5 and 2-8 of the trpR gene and analyzed the resulting truncated repressors in vivo and in vitro. The delta 2-5 trp repressor was found to be approximately 25% as active as the wild type repressor in vivo. In in vitro equilibrium binding experiments, the delta 2-5 trp repressor was shown to be five-fold less active in operator binding. The rate of dissociation of the complex formed between the delta 2-5 trp repressor and operator was essentially the same as the rate of dissociation of the wild type trp repressor/operator complex. However association of the delta 2-5 trp repressor with operator was clearly defective. Since the NH2-terminal arms of the trp repressor appear to affect association predominantly they may play a role in facilitating non-specific association of repressor with DNA as repressor seeks its cognate operators. The delta 2-8 trp repressor was unstable in vivo and in vitro, suggesting that some portion of the NH2-terminal arm is required for proper folding of the remainder of the molecule.  相似文献   

17.
The results of two 30-ps molecular dynamics simulations of the trp repressor and trp aporepressor proteins are presented in this paper. The simulations were obtained using the AMBER molecular mechanical force field and in both simulations a 6-A shell of TIP3P waters surrounded the proteins. The trp repressor protein is a DNA-binding regulatory protein and it utilizes a helix-turn-helix (D helix-turn-E helix) motif to interact with DNA. The trp aporepressor, lacking two molecules of the L-tryptophan corepressor, cannot bind specifically to DNA. Our simulations show that the N- and C-termini and the residues in and near the helix-turn-helix motifs are the most mobile regions of the proteins, in agreement with the X-ray crystallographic studies. Our simulations also find increased mobility of the residues in the turn-D helix-turn regions of the proteins. We find the average distance separating the DNA-binding motifs to be larger in the repressor as compared to the aporepressor. In addition to examining the protein residue fluctuations and deviations with respect to X-ray structures, we have also focused on backbone dihedral angles and corepressor hydrogen-bonding patterns in this paper.  相似文献   

18.
We have determined the solution structures and examined the dynamics of the Escherichia coli trp repressor (a 25-kDa dimer), with and without the co-repressor L-tryptophan, from NMR data. This is the largest protein structure thus far determined by NMR. To obtain a set of data sufficient for a structure determination it was essential to resort to isotopic spectral editing. Line broadening observed in this molecular mass range precludes for the most part the measurement of coupling constants and stereospecific assignments, with the inevitable result that the attainable resolution of the final structure will be somewhat lower than the resolution reported for smaller proteins and peptides. Nevertheless the general topology of the protein can be deduced from the subsets of NOEs defining the secondary and tertiary structure, providing a basis for further refinement using the full set of NOEs and energy minimization. We report here (a) an intermediate resolution structure that can be deduced from NMR data, covalent, angular and van-der-Waals constraints only, without resort to detailed energy calculations, and (b) the limits of uncertainty within which this structure is valid. An examination of these structures combined with backbone amide exchange data shows that even at this resolution three important conclusions can be drawn: (a) the protein structure changes upon binding tryptophan; (b) the putative DNA binding region is much more flexible than the core of the molecule, with backbone amide proton exchange rates 1000 times faster than in the core; (c) the binding of tryptophan stabilizes the repressor molecule, which is reflected in both the appearance of additional NOEs, and in the slowing of backbone proton exchange rates by factors of 3-10. Sequence-specific 1H-NMR assignments and the secondary structure of the holopressor (L-tryptophan-bound form) have been reported previously [C. H. Arrowsmith, R. Pachter, R. B. Altman, S. B. Iyer & O. Jardetzky (1990) Biochemistry 29, 6332-6341]. Those for the trp aporepressor (L-tryptophan-free form), made using the same methods and conditions as described in the cited paper, are reported here. The secondary structure of the aporepressor was calculated from sequential and medium-range NOEs and is the same as reported for the holorepressor except that helix E is shorter. The tertiary solution structures for both forms of the repressor were calculated from long-range NOE data.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
High-resolution proton nuclear magnetic resonance spectra of the trp repressor of Escherichia coli under various conditions are reported and analysed. The spectrum of the denatured state agrees with that predicted from the amino acid composition, with the exception of the two histidine residues, which have different chemical shifts although they titrate normally. The spectrum of the native protein shows the presence of extensive secondary and tertiary structure. Using information from chemical shifts, numbers of protons, titration behaviour, homonuclear chemical-shift-correlated spectroscopy and nuclear Overhauser enhancement correlated spectroscopy, most of the aromatic protons have been assigned to residue type. Further, about 30% of the aliphatic protons have been assigned to residue type by two-dimensional spectroscopy. Nuclear Overhauser enhancements establish that high-field methyl groups belonging to a valine residue lie directly over an aromatic ring.  相似文献   

20.
A subset of the spin systems assigned in the 1H NMR spectrum of the trp repressor in the first paper in this series (our penultimate preceding paper in this journal) can be identified as surface or buried residues on the basis of four independent types of measurement: selective spin-lattice relaxation times; the dependence of line widths on temperature and the concentration of manganous ion; fluorescence quenching; and titration behaviour. Criteria are developed for distinguishing surface and buried residues. The significance for the function of DNA binding proteins is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号